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Abstract

We present an algorithm for detecting periodicity in sequences produced by
repeated application of a given function. Our algorithm uses logarithmic memory
with high probability, runs in linear time, and is guaranteed to stop within the
second loop through the cycle. We also present a partitioning technique that offers
a time/memory tradeoff. Our algorithm is especially well suited for sequences where
the cycle length is typically small compared to the length of the acyclic prefix.

Keywords: Cycle detection; Algorithms; Analysis of algorithms; Stack; Time/memory
tradeoff; Random function.

1 Introduction

Given a function f : D → D and an initial element x0 ∈ D, define the sequence {xi} by
xi = f(xi−1) for i ≥ 1.

If D is finite, this sequence must eventually become periodic. Then there exist unique
µ and λ such that x0, . . . , xµ+λ−1 are all distinct, but xi = xi+λ for all i ≥ µ. The
elements x0, . . . , xµ−1 form the prefix of the sequence, and the elements xµ, . . . , xµ+λ−1

constitute its cycle.
The cycle detection problem asks for finding a pair of elements xi = xj for i 6= j, and

possibly also finding the cycle length λ. There are several existing algorithms for this
purpose; see [1, 3], [5, exercise 3.1–6], [9, 10].

Cycle detection arises in a number of situations:

• In studying the behavior of random number generators [5].

• In searching for function collisions. A collision is a pair x 6= y such that f(x) =
f(y). One way to find a collision is to repeatedly apply f starting from some
initial value x0, and find the cycle length λ of the resulting sequence. Then, using
the knowledge of λ, we can reconstruct the collision pair xµ−1, xµ+λ−1. Finding
collisions has several cryptanalytic applications [6, 9].

• In order to detect when, say, a cellular automaton configuration has become peri-
odic.

• In Pollard’s rho methods for factorization and discrete logarithms [7, 8]. (The
ideas we are about to present in this paper, however, do not seem applicable to
the rho factorization method.)
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In this paper we present a new cycle detection algorithm. The algorithm requires
that a total ordering be defined on D. For simplicity, we assume that D is a finite set
of integers.

Throughout this paper, we will refer to the xi’s as values, and to the corresponding
indices i as times.

The rest of this paper is organized as follows: In Sections 2 and 3 we present our
algorithm. In Section 4 we analyze its performance under a random function f . In
Section 5, we compare our algorithm to some other cycle detection algorithms. We
make some final observations in Section 6.

2 The basic stack algorithm

Our basic algorithm is as follows: Keep a stack of pairs (xi, i), where, at all times, both
the i’s and the xi’s in the stack form strictly increasing sequences. The stack is initially
empty. At each step j, pop from the stack all entries (xi, i) where xi > xj . If an xi = xj

is found in the stack, we are done; then the cycle length is λ = j − i. Otherwise, push
(xj , j) on top of the stack and continue.

Proposition 1 The stack algorithm always halts on the smallest value of the sequence’s
cycle, at some time in [µ + λ, µ + 2λ).

Proof Consider the cycle’s minimal value xmin. Once it is added to the stack on the
first loop through the cycle, it is never removed. Therefore, the algorithm will halt when
it encounters xmin on the second loop through the cycle. On the other hand, any other
cycle value is greater than xmin, so it will be removed by xmin before it has a chance to
appear again.

This algorithm runs in linear time, since the running time of each step is proportional
to the number of elements removed from the stack at that step, and each element is
removed at most once.

For further analysis of the algorithm, we assume that the sequence values have
independently random magnitudes, subject to the periodicity constraint defined by µ
and λ. This implies, in particular, that the relative order of the values x0, . . . , xµ+λ−1

corresponds to a random permutation of µ + λ elements. Note that for our purposes,
the relative order of the values is all that matters.

(If the sequence is known in advance to have regularities, we can apply a hash
function whenever we compare values in the stack.)

Since the cycle minimum xmin appears in a random position in the cycle, the algo-
rithm’s average running time for fixed µ and λ is µ + 3

2λ.
Now we analyze the behavior of the stack up to a given time n < µ + λ. We can

simplify our conceptual model by letting µ = ∞, and feeding the stack random real
numbers in [0, 1]. We first show that the maximum size of the stack up to time n is
Θ(log n) with high probability.

Theorem 2 Given a positive integer n, let Sn be the stack size at time n, and Mn the
maximum stack size up to time n. Then:

1. Sn has expectation Hn+1 = ln n + O(1).
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Figure 1: Maximum stack size at time n = 5× 108

2. Sn is almost surely > δ lnn for any constant δ < 1.

3. Mn is almost surely < δ lnn for any constant δ > e.

Proof (See [4, section 1.2.10].) We examine the sequence backwards. For each i,
1 ≤ i ≤ n + 1, let Xi = 1 if xn+1−i is present in the stack at time n, and Xi = 0
otherwise.

Then, X1 is always equal to 1, X2 = 1 with probability 1/2, X3 = 1 with proba-
bility 1/3 independently of X1 and X2, etc. In general, Xi = 1 with probability 1/i
independently of all Xj , j < i.

This independence structure among the Xi’s implies that they are fully independent.
Now, Sn =

∑
Xi. Therefore E ≡ E(Sn) =

∑n+1
i=1 1/i = Hn+1, proving our first

claim.
For our other two claims, we apply Chernoff’s bounds [4, exercise 1.2.10–22], given

that the Xi’s are fully independent:

Pr(Sn ≤ rE) ≤ (er−1/rr)E , for any 0 < r ≤ 1; (1)
Pr(Sn ≥ rE) ≤ (er−1/rr)E , for any r ≥ 1. (2)

To prove the third claim, we note that the right-hand side of (2) is o(1/n) for r > e.
And clearly, this bound on the stack size is also true for times < n. Therefore, by the
union bound, the probability that the stack reaches size rE at any time t, 0 ≤ t ≤ n,
tends to zero as n→∞.

The second claim follows from (1) and it is even easier.

Experiments seem to indicate that Mn has an upper bound somewhat lower than
e lnn. We fed n = 5 × 108 pseudorandom values into an initially empty stack, and
recorded the maximum stack size. We repeated this experiment 100 times. The results
obtained were highly concentrated around an average of about 2.38 ln n. See Figure 1.

We end this section with a result concerning the distribution of the entries in the
stack at time n.

Theorem 3 Suppose an initially empty stack is fed random real numbers in [0, 1]. Then,
at time n, the expected magnitude of the i-th topmost stack entry is 2−i, for i ≥ 1. The
expected time of the i-th bottommost stack entry is n(1− 2−i).
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Proof By induction. Denote the i-th topmost stack entry by si. Then s1 is a uniformly
random number in [0, 1], so E(s1) = 1/2. And for any i > 1, the entry si is a random
number subject to the constraint si < si−1. Therefore, the distribution of si can be
generated by si = Xsi−1, where X is a uniformly random number in [0, 1), independent
of si−1. Therefore, E(si) = E(si−1)/2.

A similar argument applies to the times of the bottommost stack entries.

3 A partitioning technique

We now present a partitioning technique for reducing the stack algorithm’s halting time,
while increasing its memory use only by a constant factor, and not affecting the running
time per step.

For some integer k, we divide the domain D into k disjoint classes. We could, for
example, consider the remainder modulo k of each value xi. Or, more conveniently, we
could let k be a power of 2, and take either the most-significant or the least-significant
bits of xi.

We keep a separate stack for each class. At each step i, we first determine which
class xi belongs to, and then we insert (xi, i) in the corresponding stack.

This multi-stack algorithm works correctly because, whenever a given value appears,
it is always sent to the same stack. Further, since at each step, the algorithm operates
on a single stack, the run time per step remains practically unchanged.

To derive the algorithm’s running time, note that each class j, 0 ≤ j < k, contains
its own cycle minimum xmin,j . The algorithm halts when it encounters the first of all
these minima for a second time. And under our randomness assumptions, each xmin,j

is distributed uniformly and independently at random in the cycle. It follows that, for
fixed µ and λ, the average running time decreases to

µ + λ(1 + 1/(k + 1)).

Any algorithm must obviously call f at least µ+λ times. So if we take, for example,
k = 100, then our algorithm’s running time will be just 1% of the cycle length above
the absolute minimum achievable.

It can also be shown that the variance of the running time is close to λ2/k2 for large
k.

If k � µ + λ, the memory used increases from O(log(µ + λ)) to

O(k log(µ + λ)),

so the memory is multiplied by a factor of k.

4 Performance under a random function

Now we analyze our algorithm’s performance under a random function. Let D be a set
of m integers, and choose a function f : D → D uniformly at random from among the
mm possible such functions. Also, choose the initial value x0 randomly from D.

It has been shown that in this scenario, for large m, the joint probability density
function of µ and λ is approximately ([3], [5, exercise 3.1–11], see also [6])

w(µ, λ) =
1
m

e−(µ+λ)2/(2m), for µ, λ ≥ 0.
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Each of µ and λ has expectation
√

πm/8. (The birthday paradox implies that
E(µ + λ) = O(

√
m).) For a fixed µ + λ, the value of µ is distributed uniformly in

[0, µ + λ). This implies the following corollary to Theorem 3:

Corollary 4 Under a random function f , when the single-stack algorithm halts, the
stack contains exactly i entries from the prefix with probability 2−(i+1), for i ≥ 0.

Proof When the algorithm halts, all the stack entries are from the prefix except for the
topmost entry xmin.

Consider the stack at time n = µ+λ−1. Let (s1, t1), (s2, t2), . . . be the entries in the
stack at that time. Then si is in the prefix if and only if ti < µ. But, as we said before,
once n is fixed, µ is distributed uniformly in [0, n). It follows that Pr(ti ≥ µ) = E(ti)/n.
But we proved in Theorem 3 that E(ti) = n(1− 2−i). The claimed result follows.

Now we derive the expectation and the variance of the algorithm’s running time
under a random f . We start with the single-stack version.

Let T1 be the random variable for the halting time of the single-stack algorithm.
For fixed µ and λ, the event T1 = t occurs with probability f1(µ, λ, t) = 1/λ, for
µ + λ ≤ t < µ + 2λ.

Therefore, the overall expected running time is

E(T1) =
∫ ∞

µ=0

∫ ∞
λ=0

∫ µ+2λ

t=µ+λ
f1(µ, λ, t)w(µ, λ) dt dλ dµ

= 5
√

πm

32
≈ 1.5666

√
m. (3)

Similarly,

Var(T1) =
(29

9
− 25π

32

)
m ≈ .7679 m. (4)

In the multi-stack case, for fixed µ and λ, the running time Tk is equal to t with
probability

fk(µ, λ, t) =
k

λ

(
2 +

µ− t

λ

)k−1
, for µ + λ ≤ t < µ + 2λ.

Therefore,

E(Tk) =
(
1 +

1
2(k + 1)

)√
πm/2, (5)

and
Var(Tk) ≈ (1 + 1/k)(2− π/2)m, for large k. (6)

Therefore, as k → ∞, the expectation and the variance converge to their minimum
possible values.

5 Comparison to other algorithms

As we have seen, our basic stack algorithm runs in linear time, uses logarithmic space,
and is guaranteed to stop within the second repetition of the sequence’s cycle, regardless
of its size. Our partitioning technique offers a time/memory tradeoff: for memory
O(k log(µ + λ)), we halt at time λ/k above the absolute minimum µ + λ.

How does our algorithm compare to other known algorithms? We now address this
issue.
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5.1 Floyd’s and Brent’s algorithms

We start with a pair of algorithms that need just two memory locations to store sequence
values.

Floyd’s algorithm [5, exercise 3.1–6] is based on the observation that, for given µ and
λ, there is always a unique j, µ ≤ j < µ+λ, such that xj = x2j . Thus, to find this j, we
initialize x ← x0, y ← x0, j ← 0; then we repeatedly perform x ← f(x), y ← f(f(y)),
j ← j + 1, until we find that x = y. Once we halt, j will be a multiple of λ (though not
necessarily λ itself).

Brent’s algorithm [3] is an improvement on Floyd’s. In Brent’s algorithm we keep a
single running copy of the sequence. At each step i, we compare the current value xi

to a previously saved value y; if i is a power of 2, we also update y, by letting y ← xi,
j ← i. Once we find that xi = y, the difference i− j will be the actual value of λ.

Brent shows that this simple approach never performs worse than Floyd’s. Brent
also analyzes his algorithm’s running time TB under a random function f ; he finds that

E(TB) ≈ 1.9828
√

m, and Var(TB) ≈ 1.4241 m. (7)

By (3) and (4), our single-stack algorithm is about 20% faster than Brent’s on average,
and it also has a smaller variance. We pay a price, however, in the amount of memory
we use.

5.2 Sedgewick, et al.’s algorithm

Sedgewick, Szymanski, and Yao [10] analyze the problem of optimizing worst-case per-
formance, using a bounded amount of memory. They present an algorithm that uses a
table of size M , where M is a free parameter.

Their algorithm is as follows. Let T be a table of size M . Initially we set d ← 1.
At each step i, if i mod gd < d, we search for xi in T (here g is a free parameter, just
like M). And if i is a multiple of d, we store (xi, i) in T . Whenever the table becomes
overfull, we double d and erase from the table all entries (xj , j) where j is no longer a
multiple of d.

The table T should be implemented so as to asymptotically reduce the worst-case
search time, using, for example, a balanced tree approach or some hashing method.

Let ts be the time needed to perform one search in T , and let tf be the time needed
to evaluate f once. Then, the authors show, g can be chosen as a function of ts, tf ,
and M , such that the algorithm’s worst-case running time is tf(µ+λ)(1+Θ(

√
ts/Mtf)).

(They also show that this worst-case performance is asymptotically optimal.)
Thus, our multi-stack algorithm’s average-case performance, as a function of the

memory used, is asymptotically better than the worst-case performance of Sedgewick
et al.’s algorithm. (Our algorithm’s worst-case performance is, of course, much worse.)

5.3 Algorithms with a better time/memory tradeoff

Some approaches achieve a better time/memory tradeoff than ours.
The distinguished point method [6, 9] consists of keeping all values that satisfy a

certain easily-testable distinguished property (e.g., ending in a certain number of zeros in
binary). At each step i, if the current value xi is distinguished, we store it and compare
it to all previously stored values. We use hashing to perform all these comparisons
simultaneously. If we choose the distinguished property in advance so that about k
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points are memorized, then the expected running time is about (µ + λ)(1 + 1/k). In
contrast, to achieve the same running time, our multi-stack algorithm needs log(µ + λ)
times as much memory.

Our algorithm, however, offers certain advantages. First, the distinguished point
algorithm is not guaranteed to succeed; it will not halt if the cycle contains no distin-
guished points, which is likely if λ happens to be small. Furthermore, our algorithm is
simpler because it does not require the use of a hash table.

Another approach, based on a suggestion by Woodruff [11], is to keep a random
sample of sequence values. We proceed as follows. As in Section 3, we divide the
domain D into k ≥ 2 disjoint classes of equal size. We keep an array S of size k. At
each step i, we first find to which class j, 0 ≤ j < k, the current value xi belongs to;
then we check whether xi = S[j], and if so, we halt. Otherwise, we decide at random
whether to replace S[j] by xi or not: we let S[j]← xi with probability k/i.

It is easy to check that, at every time n � k, each entry S[j] contains a uniformly
random representative of the values xi, i ≤ n, that belong to class j. One can further
show that the algorithm’s expected running time, for fixed µ and λ, is (µ + λ)(1 +
1/(k− 1)). Thus, we achieve a time/memory tradeoff similar to the distinguished point
algorithm.

This sampling method, however, has the disadvantage of requiring an extensive
amount of randomness. Since µ + λ might be very large, we need to generate a large
amount of random numbers, so we need a random number generator of high quality.
Then the random number generation could take up a significant portion of the running
time.

5.4 The case µ� λ

Not in all applications does f behave like a random function. There are situations where
it is common for µ to be much larger than λ—for example, when running configurations
in certain cellular automata until they oscillate, such as in the Game of Life [2]. Besides
the stack algorithm, all the algorithms mentioned so far have a running time proportional
to µ as well as to λ. In contrast, the stack algorithm’s running time above µ depends
only on λ; therefore, it is ideally suited for cases where µ� λ.

Gosper’s algorithm [1] shares this property; like ours, it is guaranteed to stop before
time µ + 2λ, and it also uses logarithmic memory. Gosper’s algorithm works as follows.
For n ≥ 1, denote by z(n) the number of trailing zeros of n written in binary. Keep an
array T of saved values. Initially, let T [0] = x0. At each step i, compare xi to all the
values stored in T ; if a match is found, halt. Otherwise, let T [z(i + 1)] = xi.

Again, we should use hashing to check the presence of xi in table T in constant time.
The size of T at time i is dlog2(i + 1)e. Thus, Gosper’s algorithm is comparable to the
single-stack algorithm in both memory use and halting time. As before, however, our
algorithm is simpler because it does not require the use of a hash table.

6 Conclusion

Of all the cycle detection algorithms available, which is the best? It depends on the
circumstances. If f behaves like a random function, our multi-stack algorithm is not
a bad choice, although the distinguished point algorithm requires less memory. To
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prevent the latter from occasionally failing to halt, we could simultaneously run a stack
as a backup.

If f is known not to behave like a random function (i.e., it often produces short
cycles), our stack algorithm is most appropriate.

On the other hand, when our objective is to minimize worst-case performance, using
a predetermined, fixed amount of memory, we should use the algorithm of Sedgewick et
al. [10].

We end with some observations:

1. In principle, the partitioning technique can be applied to any cycle-finding algo-
rithm that keeps only one running copy of the sequence. In fact, we have already
done so in the sampling algorithm above. (The distinguished point method also
uses partitioning: it simply ignores all classes except for one, to which it applies
the “brute-force” approach of keeping all the values in the sequence.)

For illustration, let us apply the partitioning technique to Brent’s algorithm [3].
Instead of a single saved value y, we now have a saved value yj for each class j,
0 ≤ j < k. Each class also has its own time counter tj , besides a “global” time
counter t. In order to space out the save times as much as possible, we could
update yj whenever tj = b2i+j/kc, for i = 0, 1, 2, . . .. The analysis, however, lies
beyond the scope of this article.

2. As mentioned in the Introduction, our stack algorithm does not seem applicable
to Pollard’s rho factorization method [3, 7]. Given two numbers modulo n, we do
not know how to determine which of the two is larger modulo an unknown factor
p of n. Similarly, the partitioning technique does not seem applicable either.
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