Weak ε-nets and interval chains

Noga Alon* Haim Kaplan† Gabriel Nivasch‡
Tel Aviv University Tel Aviv University Tel Aviv University
nogaa@post.tau.ac.il haimk@post.tau.ac.il gnivasch@post.tau.ac.il

Micha Sharir§
Tel Aviv University
michas@post.tau.ac.il

Shakhar Smorodinsky¶
Hebrew University of Jerusalem
shakhar@courant.nyu.edu

Abstract
We construct weak ε-nets of almost linear size for certain types of point sets. Specifically, for planar point sets in convex position we construct weak 1/ε-nets of size \(O(rα(r)) \), where \(α(r) \) denotes the inverse Ackermann function. For point sets along the moment curve in \(\mathbb{R}^d \) we construct weak 1/ε-nets of size \(r \cdot 2^{poly(α(r))} \), where the degree of the polynomial in the exponent depends (quadratically) on \(d \).

Our constructions result from a reduction to a new problem, which we call stabbing interval chains with \(j \)-tuples. Given the range of integers \(N = [1, n] \), an interval chain of length \(k \) is a sequence of \(k \) consecutive, disjoint, nonempty intervals contained in \(N \). A \(j \)-tuple \(\overline{p} = (p_1, \ldots, p_j) \) is said to stab an interval chain \(C = I_1 \cdot \cdot \cdot I_k \) if each \(p_i \) falls on a different interval of \(C \). The problem is to construct a small-size family \(Z \) of \(j \)-tuples that stabs all \(k \)-interval chains in \(N \).

Let \(z_k^{(j)}(n) \) denote the minimum size of such a family \(Z \). We derive almost-tight upper and lower bounds for \(z_k^{(j)}(n) \) for every fixed \(j \); our bounds involve functions \(α_m(n) \) of the inverse Ackermann hierarchy. Specifically, we show that for \(j = 3 \) we have \(z_k^{(3)}(n) = \Theta(nα_{k/2}(n)) \) for all \(k \geq 6 \). For each \(j \geq 4 \) we construct a pair of functions \(P_j^{(j)}(m), Q_j^{(j)}(m) \), almost equal asymptotically, such that \(z_k^{(j)}(m) = O(nα_m(n)) \)

1 Introduction
Let \(S \) be an \(n \)-point set in \(\mathbb{R}^d \), and let \(ε \) be a real number, \(0 < ε < 1 \). A weak ε-net for \(S \) (with respect to convex sets) is a set of points \(N \subset \mathbb{R}^d \), such that every convex set in \(\mathbb{R}^d \) that contains at least \(εn \) points of \(S \) contains a point of \(N \).† For convenience, we let \(r = 1/ε \), and we speak of weak 1/ε-nets, \(r > 1 \), so our bounds increase with \(r \).

Alon et al. [2] showed that, for every \(d \), for every finite \(S \subset \mathbb{R}^d \) and every \(r > 1 \) there exists a weak 1/ε-net of size at most \(fd(r) \), for some family of functions \(fd \), each depending only on \(r \).

The best known upper bound for the planar case is \(fd_2(r) = O(r^2) \), by Alon et al. [2] (see also Chazelle et al. [7]). For general \(d \geq 3 \) we have \(fd(r) = O(r^{d(\log r)^{c(d)}}) \), for some constants \(c(d) \). This was first shown by Chazelle et al. [7], and later on by Matoušek and Wagner [12] via an alternative, simpler technique.

On the other hand, there are no known lower bounds for fixed \(d \), besides the trivial \(fd(r) = Ω(r) \). (Matoušek [10] showed, though, that \(fd(r) \) increases exponentially in \(d \) for fixed \(r \); specifically, \(fd(50) = Ω(e^{\sqrt{d/2}}) \).)

If the points of \(S \) lie in certain special configurations, better bounds exist on the size of the weak ε-net. For example, Chazelle et al. [7] showed that if \(S \subset \mathbb{R}^2 \) is in convex position, then \(S \) has a weak 1/ε-net of size \(O(r(\log r)^{log_2 3}) = O(r(\log r)^{1.59}) \). Furthermore, if \(S \) is the vertex set of a regular \(n \)-gon, then \(S \) admits a weak 1/ε-net of size \(Θ(r) \).

The techniques of Matoušek and Wagner [12] also yield improved bounds for some special cases. That is, they showed that if the points of \(S \subset \mathbb{R}^d \) lie along the moment curve

\[
\mu_d = \{(t, t^2, \ldots, t^d) \mid t \in \mathbb{R}\},
\]

*Supported by a USA Israeli BSF grant, by a grant from the Israel Science Foundation (ISF), and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.
†Supported by ISF Grant 975/06.
‡Supported by ISF Grant 155/05.
§Supported by NSF Grant CCF-05-14079, by a grant from the U.S.-Israeli Binational Science Foundation, by ISF Grant 155/05, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.
¶Work done while the author was a Landau post-doctoral fellow at the Hebrew University.

††The set \(N \) is called a weak ε-net because we do not necessarily have \(N \subseteq S \); otherwise, \(N \) would be a regular (or "strong") ε-net. The need to consider weak ε-nets here stems from the fact that the system of all convex sets in \(\mathbb{R}^d \) has infinite VC-dimension. For a full discussion, see Matoušek [11, Ch. 10].
then S has a weak $\frac{1}{d}$-net of size $O(r(\log r)^{c(d)})$, for some constants $c(d) \approx 2d^2 \ln d$. They also obtained improved bounds for point sets on algebraic varieties of bounded degree, among other cases.

Bradford and Capoyleas [5] showed that if S is, in some sense, uniformly distributed on the $(d - 1)$-dimensional sphere, then S has a weak $\frac{1}{r}$-net of size $O(r(\log^2 r)$ (with the constant of proportionality depending on d).

(Aronov et al. [1] have tackled the weak ϵ-net problem from another angle, for the planar case: They seek to determine, given an integer $k \geq 1$, the maximum value r_k for which every set $S \subset \mathbb{R}^2$ has a weak $\frac{1}{r_k}$-net of size k. They derive upper and lower bounds for r_k, for small values of k. Babazadeh and Zarrabi-Zadeh [4] extended this work to the case $d \geq 3$.

Mustafa and Ray [13] have found a connection between weak ϵ-nets with respect to convex sets, and “strong” ϵ-nets with respect to other set systems with finite VC-dimension.)

Algorithmic aspects. The constructions of Matoušek and Wagner [12] yield an algorithm for building, for a given n-point set $S \subset \mathbb{R}^d$, $d \geq 2$, a weak $\frac{1}{r}$-net of size $O(r^{d+polylog}(r))$ in time $O(n \log r)$. For the case $d = 2$, a weak $\frac{1}{r}$-net of size $O(r^2)$ can be constructed in time $O(nr^2)$, as was shown earlier by Chazelle et al. [6].

Chazelle et al. [6] also show how to determine, in time $O(n^3)$, the largest r for which a given set N is a weak $\frac{1}{r}$-net of a given planar n-point set S. There is no known polynomial-time algorithm for this problem for dimensions 3 and larger.

Our results. In this paper we derive improved upper bounds for two of the above-mentioned cases: namely, for planar point sets in convex position, and for point sets along the moment curve μ_d (1.1). Our bounds involve the inverse Ackermann function $\alpha(r)$, and are as follows:

Theorem 1.1. Let S be an n-point set in convex position in the plane. Then, S has a weak $\frac{1}{r}$-net of size $O(r \alpha(r))$.

Theorem 1.2. Let S be a set of n points along the d-dimensional moment curve μ_d, $d \geq 3$. Let

$$j = \begin{cases} (d^2 + d)/2, & \text{if } d \text{ even;} \\ (d^2 + 1)/2, & \text{if } d \text{ odd; } \end{cases}$$

and let $s = \lfloor (j - 2)/2 \rfloor$. Then, S has a weak $\frac{1}{r}$-net of size

$$r \cdot 2^{O(\alpha(r)^{-r})}, \quad j \text{ even;}$$

$$r \cdot 2^{O(\alpha(r)^{-\log \alpha(r)})}, \quad j \text{ odd.}$$

(Note that j is even if and only if d is divisible by 4.)

Furthermore, these weak $\frac{1}{r}$-nets can be easily constructed in time $O(n \log r)$.

1.1 The inverse Ackermann function. We briefly introduce (our version of) the inverse Ackermann functions $\alpha_k(x)$ and $\alpha(x)$.

The **inverse Ackermann hierarchy** is defined as follows. Let $\alpha_1(x) = x/2$, and for each $k \geq 2$, let $\alpha_k(x)$ be the number of times we have to apply α_{k-1}, starting from x, until we reach a value not larger than 1. In other words, for $k \geq 2$, let

$$\alpha_k(x) = \begin{cases} 0, & \text{if } x \leq 1; \\ 1 + \alpha_k(\alpha_{k-1}(x)), & \text{otherwise.} \end{cases}$$

We have $\alpha_2(x) = \lfloor \log_2 x \rfloor$ for $x \geq 1$, and $\alpha_3(x) = \log^* x$. (Note that $\alpha_k(x)$ is always an integer for $k \geq 2$.)

Now, for every fixed $x \geq 6$, the sequence $\alpha_1(x), \alpha_2(x), \alpha_3(x), \ldots$ decreases strictly until it settles at 3. The **inverse Ackermann function** $\alpha(x)$ assigns to each real number x the smallest integer k for which $\alpha_k(x) \leq 3$:

$$\alpha(x) = \min \{k \mid \alpha_k(x) \leq 3\}.$$

1.2 Interval chains. Our constructions of weak ϵ-nets follow by a reduction to a new problem, which we call **stabbing interval chains**.

Let $[i, j]$ denote the interval of integers $\{i, i + 1, \ldots, j\}$; the case $i = j$ is also denoted as $[i]$. An interval chain3 of size k (also called a k-chain) is a sequence of k consecutive, disjoint, nonempty intervals

$$C = I_1 I_2 \cdots I_k = [a_1, a_2] [a_2 + 1, a_3] \cdots [a_k + 1, a_{k+1}],$$

where $a_1 \leq a_2 < a_3 < \cdots < a_{k+1}$. We say that a j-tuple of integers (p_1, \ldots, p_j) stabs an interval chain C if each p_j lies in a different interval of C (see Figure 1).

![Figure 1: A 9-chain stabbed by a 5-tuple.](image)

Our problem is to stab, with as few j-tuples as possible, all interval chains of size k that lie within a given range $[1, n]$.

Definition 1.3. Let $s^{(j)}(n)$ denote the minimum size of a collection Z of j-tuples that stab all k-chains that lie in $[1, n]$.

2We follow Seidel [14, slide 85]. The function $\alpha(x)$ is usually defined slightly differently (see, for example, [11, p. 173], though there are other versions), but all variants are equivalent up to an additive constant.

3An identical definition of interval chains has already been given by Condon and Saks [9], for an unrelated application.
Note that \(z_k^{(j)}(n) \) is increasing in \(n \), decreasing in \(k \), and increasing in \(j \).

In this paper we derive almost-tight upper and lower bounds for \(z_k^{(j)}(n) \), involving functions in the inverse Ackermann hierarchy. Our upper bounds for \(z_k^{(j)}(n) \) are used in the proofs of Theorems 1.1 and 1.2 above. The case \(j = 3 \) (which is the one needed for Theorem 1.1) is simpler (and tighter) than the general case \(j \geq 4 \), and we treat this case separately, both in the upper and the lower bounds.

Our bounds for stabbing interval chains are as follows:

Theorem 1.4. \(z_k^{(3)}(n) \) satisfies the following bounds:

\[
\begin{aligned}
z_k^{(3)}(n) &= \begin{cases}
\frac{n-1}{2} & j = 3, \\
\Theta(n \log n) & j = 4, \\
\Theta(n \log \log n) & j = 5, \\
\end{cases} \\
z_k^{(3)}(n) &= \Omega(n/r) \\
\end{aligned}
\]

and, for every \(k \geq 6 \), we have

\[
\begin{aligned}
z_k^{(3)}(n) &\leq cn_1(n) & \text{for all } n; \\
z_k^{(3)}(n) &\geq c'n_2(n) & \text{for } n \geq n_k; \\
\end{aligned}
\]

for some absolute constants \(c \) and \(c' \), and some constants \(n_k \) depending on \(k \).

Theorem 1.5. Let \(j \geq 4 \) be fixed, and let \(s = \lfloor (j-2)/2 \rfloor \). Then there exist functions \(P_j'(m), Q_j'(m) \), both of the form

\[
\begin{aligned}
P_j'(m) &= \begin{cases}
q_1(m) + O(m^{-1}) & j \text{ even}, \\
q_1(m) \log m + O(m^{-1}) & j \text{ odd}; \\
\end{cases} \\
\end{aligned}
\]

such that, for every \(m \geq 2 \), we have

\[
\begin{aligned}
z_k^{(j)}(m) &\leq cn_{m}(n) & \text{for all } n; \\
z_k^{(j)}(m) &\geq nc_{m}(n) & \text{for } n \geq n_m. \\
\end{aligned}
\]

Here \(c = c(j) \) is a constant that depends only on \(j \), and \(n_m(n) \) are constants that depend on \(j \) and \(m \).

Thus, for every fixed \(j \), once \(k \) is sufficiently large, \(z_k^{(j)}(n) \) becomes barely superlinear in \(n \). Moreover, if we let \(k \) grow as an appropriate function of \(\alpha(n) \), then the upper bounds become linear. Namely, we have

\[
z_k^{(3)}(n) = O(n) \quad \text{for } k \geq 2\alpha(n); \quad \text{and for } j \geq 4, \quad \text{we have} \\
z_k^{(j)}(n) = O(n) \quad \text{for } k \geq P_j'(\alpha(n)). \\
\]

In the full version of this paper we also prove the following bound for stabbing with pairs \(j = 2 \):

Lemma 1.6. We have

\[
\frac{n}{k/2} - 3 \leq z_k^{(2)}(n) \leq \frac{n}{k/2} - 1.
\]

2 From weak \(\epsilon \)-nets to interval chains

In this section we present constructions of weak \(\epsilon \)-nets that reduce to problems of stabbing interval chains with \(j \)-tuples. We first address the case when \(S \) is planar and in convex position, and then we tackle the case where \(S \) lies on the moment curve in \(\mathbb{R}^d \) (as well as some related cases).

Lemma 2.1. Let \(S \) be a set of \(n \) points in convex position in the plane, and let \(r > 1 \). Then \(S \) has a weak \(\frac{1}{r} \)-net of size \(z_{\ell/r-1}^{(3)}(\ell) \), where \(\ell \) is a free parameter with \(4r \leq \ell < n \).

Proof. Partition the points of \(S \) into \(\ell \) “blocks” \(B_0, B_1, \ldots, B_{\ell-1} \) of \(n/\ell \) consecutive points, clockwise along the boundary of \(CH(S) \). Construct a set of points \(P = \{p_0, p_1, \ldots, p_{\ell-1}\} \), where each \(p_j \) lies on the boundary of \(CH(S) \) between the last point of \(B_j \) and the first point of \(B_{j+1} \) (indices are modulo \(\ell \). See Figure 2(a).)

Consider a subset \(S' \subset S \) of size at least \(n/r \). \(S' \) must contain \(m = \ell/r \) points \(q_0, q_1, \ldots, q_{m-1} \) lying on \(m \) distinct blocks. Let \(B_{j_k} \) be the block containing \(q_k \), with \(0 \leq j_0 < j_1 < \cdots < j_{m-1} < \ell \). The blocks \(B_{j_k} \) partition \(P \) cyclically into \(m \) nonempty intervals

\[
I_k = \{p_{j_k+1}, p_{j_k+2}, \ldots, p_{j_k+1}\}, \quad 0 \leq k < m.
\]

(Indices are modulo \(\ell \) or modulo \(m \) as appropriate.) Let \(p_{a_k}, p_{b_k}, p_{c_k}, p_{d_k} \in P \) be four points belonging to four different intervals \(I_k \), listed in cyclic order. Then the intersection between the segments \(p_{a_k}p_{c_k} \) and \(p_{b_k}p_{d_k} \) must lie inside \(CH(q_0, \ldots, q_{m-1}) \subset CH(S') \). See Figure 2(b).\(^4\)

Thus, it is enough to construct a set of quadruples of points of \(P \), such that, no matter how \(P \) is cyclically partitioned into \(m \) intervals \(I_0 I_1 \cdots I_{m-1} \), some quadruple will “stab” four different intervals. The set of chord-intersection points corresponding to these quadruples is our desired weak \(\frac{1}{r} \)-net.

We take point \(p_0 \) as the first point for all the quadruples; by construction, \(p_0 \) lies in the last interval \(I_{m-1} \). Thus, it only remains to build a family \(Z \) of \((p_0, p_{a_k}, p_{b_k}, p_{c_k}) \), with \(1 \leq a < b < c < \ell \), such that some triple is guaranteed to fall on three distinct intervals among \(I_0, \ldots, I_{m-2} \), in any given cyclic chain \(I_0, \ldots, I_{m-1} \).

But this is isomorphic to the problem of stabbing all \((m-1) \)-chains in \([1, \ell-1]\) with triples. Thus, there exists a family \(Z \) of size at most \(z_{m-1}^{(3)}(\ell) = z_{\ell/r-1}^{(3)}(\ell) \).

\[^4\text{This basic idea, initially observed by Emo Welzl, already appears in [7].}\]
We take $\ell = 2r(1 + \alpha(r))$, so $\ell/(2r) - 1 = \alpha(r)$. It can be shown that $\alpha(\ell) \leq 4$ for all large enough r (recall that $\alpha(r) \leq 3$ by definition). Hence, (2.3) becomes $O(r\alpha(r))$. \[\Box\]

2.1 Point sets along the moment curve. A similar reduction applies to the case when S is a set of n points along the moment curve $\mu_d(1,1)$. This curve has the property that every hyperplane intersects it in at most d points (see, e.g., Matoušek [11, p. 97]).

If A and B are two finite sets of points along μ_d, we say that A and B are \textit{interleaving} if between every two points of A there is a point of B and vice versa. In such a case, we must have $|A| - |B| \leq 1$.

LEMMA 2.2. Let $s = \lceil (d + 1)/2 \rceil$, and let $j = (s - 1)(d + 1) + 1$. (Thus, $j = (d^2 + d + 2)/2$ for d even, and $j = (d^2 + 1)/2$ for d odd.)

Let A be a set of j points along the moment curve $\mu_d \subset \mathbb{R}^d$. Then there exists a point $x \in \mathcal{CH}(A)$ with the following property: For every point set $B \subset \mu_d$ interleaving with A, with

$$|B| = \begin{cases} j, & d \text{ even}, \\ j + 1, & d \text{ odd}, \end{cases}$$

we have $x \in \mathcal{CH}(B)$. \[\Box\]

Proof. By Tverberg’s Theorem (see, e.g., [11, p. 200]), A can be partitioned into s pairwise disjoint subsets A_1, \ldots, A_s, whose convex hulls all contain some common point x. This point x satisfies the assertion of the lemma, for if $x \notin \mathcal{CH}(B)$, then there would exist a hyperplane h that separates x from B. But there must be at least s points of A in the same side of h as x (at least one from each part A_i). By continuity, and since A and B are interleaving, it follows that the curve μ_d must intersect h at least $2s - 1$ times if d is even, or $2s$ times if d is odd. In either case, this quantity equals $d + 1$, a contradiction.\footnote{The above argument is very similar to the one used by Matoušek and Wagner [12], applied to a different construction.}

The reduction from weak ϵ-nets to stabbing interval chains with j'-tuples is now straightforward:

LEMMA 2.3. Let S be a set of n points along the moment curve μ_d, and let $r > 1$. Let

$$j' = \begin{cases} (d^2 + d)/2, & d \text{ even}; \\ (d^2 + 1)/2, & d \text{ odd}. \end{cases}$$

Then S has a weak $\frac{1}{r}$-net of size at most $z_{\ell/r-1}^{(j')}$, where ℓ is a free parameter with $(j' + 1)r \leq \ell < n$.

\[\Box\]

Proof. Partition S into ℓ blocks $B_0, B_1, \ldots, B_{\ell-1}$ of n/ℓ consecutive points. Construct a set of points $P = \{p_1, \ldots, p_{\ell-1}\} \subset \mu_d$, where each p_i lies between the last point of B_{i-1} and the first point of B_i. Take also a point $p_\ell \in \mu_d$ lying after $B_{\ell-1}$.

Consider a set $S' \subset S$ of size at least n/r. S' must contain $m = \ell/r$ points q_1, \ldots, q_m lying on m different blocks. These points determine an $(m-1)$-chain $C = I_1 \cdots I_{m-1}$ on P.

Thus, construct an optimal family Z' of j'-tuples of points in P that stab all such $(m-1)$-chains. Append the point p_ℓ to every such j'-tuple, obtaining a family Z of $(j' + 1)$-tuples (actually, this is necessary only for d even). There must exist some $(j' + 1)$-tuple $\mathbf{p} \in Z$ whose first j' points stab the chain C. By Lemma 2.2, there exists a point $x = x(\mathbf{p})$ which lies in $\mathcal{CH}(q_1, \ldots, q_m) \subseteq \mathcal{CH}(S')$. Therefore, the set of all such points $x(\mathbf{p})$, $\mathbf{p} \in Z$, is our desired weak $\frac{1}{r}$-net. It has size at most $z_{\ell-1}^{(j')}$. \[\Box\]

Proof of Theorem 1.2. Take $\ell = r(1 + P'_{j'}(\alpha(r)))$, with $P'_j(m)$ as given in Theorem 1.5. Then, arguing as before,

$$z_{\ell/r-1}^{(j')} = z_{P'_{j'}(\alpha(r))}^{(j')} \leq c\ell\alpha(\ell) \leq 4c\ell.$$

The claim follows. \[\Box\]
Remark 2.4. These results can be generalized to curves \(\gamma \subset \mathbb{R}^d \) with the property that every hyperplane intersects \(\gamma \) at most \(q \) times, for some integer \(q \geq d \). We obtain weak \(\frac{1}{r} \)-nets of size \(r \cdot 2^{\mathcal{O}(\alpha(r))} \) for point sets on such curves. (The methods of [12] yield weak \(\frac{1}{r} \)-nets of size \(O(r \cdot \text{polylog}(r)) \) for these point sets.)

3 Upper bounds for stabbing interval chains

In this section we derive upper bounds on \(z_k^{(j)}(n) \), the minimum number of \(j \)-tuples needed to stab all \(k \)-interval chains in \([1, n]\). We will always take \(j \) to be a constant, noting that the constants implicit in the asymptotic notations do depend on \(j \) (though neither on \(k \) nor on \(n \)).

We start with the following two simple bounds. We omit the proof of the first.

Lemma 3.1. For all \(j \geq 2 \) we have

\[
z^{(j)}_j(n) = \left(\frac{n - \lfloor j/2 \rfloor}{\lfloor j/2 \rfloor} \right) = \Theta \left(\frac{n^{j/2}}{j} \right).
\]

Lemma 3.2. For every fixed \(j \geq 2 \) we have

\[
z^{(j)}_{2^{j-1}}(n) = O(n \log^{j-2} n).
\]

Proof sketch. The case \(j = 2 \) is given by Lemma 3.1, so let \(j \geq 3 \). Put \(k = 2^{j-1} \). Divide the range \([1, n]\) into two blocks, each of size at most \(n/2 \), leaving between them the element \(y = \lfloor n/2 \rfloor \). Recursively build, for each block, a family of \(j \)-tuples that stab all \(k \)-chains contained in the block. In addition build, for each block, a family of \((j-1)\)-tuples that stab all \(k/2 \)-chains in the block, and append the element \(y \) to each \((j-1)\)-tuple.

The result is a family of \(j \)-tuples that stab all \(k \)-chains in \([1, n]\). Thus, by induction on \(j \),

\[
z^{(j)}_k(n) \leq 2z^{(j)}_k \left(\frac{n}{2} \right) + O(n \log^{j-3} n). \tag*{\Box}
\]

We now derive upper bounds for \(z^{(j)}_k(n) \) for all \(k \). We first tackle the case \(j = 3 \) (the one used in the proof of Theorem 1.1), and then we briefly address the general case \(j \geq 4 \).

3.1 Upper bounds for triples

We have seen that \(z^{(3)}_3(n) = \left(\frac{n-1}{2} \right) \) (Lemma 3.1) and \(z^{(3)}_4(n) = O(n \log n) \) (Lemma 3.2). Our bounds for stabbing \(k \)-chains with triples, \(k \geq 5 \), are based on the following recurrence relation.

Recurrence 3.3. Let \(t \) be an integer parameter, with \(1 \leq t \leq \sqrt{n/2} - 1 \). Then,

\[
z^{(3)}_k(n) \leq \frac{n}{t} z^{(3)}_k(t) + z^{(3)}_{k-2} \left(\frac{n}{t} \right) + 2n.
\]

Proof. Partition the range \([1, n]\) into blocks \(B_1, B_2, \ldots, B_k \) of size \(t \) (except for the last block, which might be smaller), leaving between each pair of adjacent blocks, as well as before the first block and after the last one, a single “separator” element. Let the set of separators be \(Y = \{y_i, \ldots, y_t\} \), such that block \(B_i \) lies between separators \(y_{i-1} \) and \(y_i \).

The number of blocks is \(b = \left\lceil \frac{n}{t+1} \right\rceil \). We have \(b \leq n/t - 1 \), since \(n \geq 2(t+1)^2 \geq 2t^2 + t \).

Now, every \(k \)-chain \(C = I_1 \cdots I_k \) must satisfy exactly one of the following properties (see Figure 3):

1. \(C \) is entirely contained within a block \(B_i \).
2. Every interval of \(C \), except possibly the first and the last, contains a separator.
3. Some interval \(I_j \) of \(C \), \(2 \leq j \leq k - 1 \), falls entirely within a block \(B_i \), and another interval of \(C \) contains either \(y_{i-1} \) or \(y_i \).

We can take care of the first case by constructing within each block \(B_i \) an optimal family of triples that stab all \(k \)-chains. The second case is handled by constructing on the separators \(Y \) an optimal family of triples that stab all \((k-2)\)-chains. And the third case is handled by taking all triples of the forms

\[
(a, a+1, y_i), \quad \text{for} \quad y_{i-1} \leq a \leq y_i - 2,
\]

\[
(y_{i-1}, a, a+1), \quad \text{for} \quad y_{i-1} < a \leq y_i - 1,
\]

for all \(y_i \). There are at most \(2n \) such triples. We obtain the claimed recurrence relation. \tag*{\Box}

Lemma 3.4. We have \(z^{(3)}_5(n) = O(n \log \log n) \).

Proof. Apply Recurrence 3.3 with \(k = 5 \) and \(t = \sqrt{n/3} \), and use Lemma 3.1. \tag*{\Box}

Lemma 3.5. There exists an absolute constant \(c \) such that, for every \(k \geq 6 \), we have

\[
z^{(3)}_k(n) \leq c n a_k k^{2} \left(\frac{n}{k} \right) \quad \text{for all} \ n.
\]
Proof. It is convenient to work with a slight variant of the inverse Ackermann function. Let \(n_0 = 2000 \), and define \(\tilde{\alpha}_m(x) \), \(m \geq 2 \), by \(\tilde{\alpha}_2(x) = \alpha_2(x) = \lceil \log_2 x \rceil \), and for \(m \geq 3 \) by the recurrence

\[
\tilde{\alpha}_m(x) = \begin{cases}
1, & \text{if } x \leq n_0; \\
1 + \tilde{\alpha}_m(2\tilde{\alpha}_{m-1}(x)), & \text{otherwise}.
\end{cases}
\]

One can show (see the full version) that there exists a constant \(c_0 \) such that \(|\tilde{\alpha}_m(x) - \alpha_m(x)| \leq c_0 \) for all \(m \) and \(x \).

Let \(k \geq 4 \), and let \(m = \lfloor k/2 \rfloor \). We prove, by induction on \(k \), that

\[
(3.4) \quad z_k^{(3)}(n) \leq c_1 n \tilde{\alpha}_m(n) \quad \text{for all } n,
\]

for some absolute constant \(c_1 \) (which can be assumed large enough). The base cases of the induction are \(z_4^{(3)}(n), z_5^{(3)}(n) = O(n \log n) \), by Lemmas 3.2 and 3.4, respectively.

Let now \(k \geq 6 \), and assume (3.4) holds for \(k - 2 \). We want to establish (3.4) for \(k \). The case \(n \leq n_0 \) holds if \(c_1 \) is large enough (recall that \(z_k^{(3)}(n) \) decreases with \(k \)), so assume \(n > n_0 \). We apply Recurrence 3.3 with \(t = 2\tilde{\alpha}_{m-1}(n) \). (Note that \(t \leq \sqrt{n/2} - 1 \) for \(n > n_0 \).) Letting \(z_k^{(3)}(n) = ng(n) \), observing that \(\tilde{\alpha}_{m-1}(n/t) \leq \tilde{\alpha}_{m-1}(n) \), and assuming that \(c_1 \geq 4 \), we obtain

\[
g(n) \leq g(t) + c_1.
\]

Since \(\tilde{\alpha}_m(t) = \tilde{\alpha}_m(n) - 1 \), it follows by induction on \(n \) (with base case \(n \leq n_0 \)) that \(g(n) \leq c_1 \tilde{\alpha}_m(n) \) for all \(n \). Therefore, (3.4) also holds for \(k \), and we are done. \(\Box \)

This proves the upper bounds of Theorem 1.4.

3.2 From triples to \(j \)-tuples. We now derive upper bounds for \(z_k^{(j)}(n) \), \(j \geq 4 \). Our bounds are based on the following recurrence relation.

Recurrence 3.6. Let \(j \geq 4 \) be fixed. Let \(t \) be a parameter, \(1 \leq t \leq \sqrt{n/2} - 1 \), and let \(k_1, k_2, k_3 \) be integers. Put \(k = 2k_1 + k_2(k_3 - 2) \). Then,

\[
z_k^{(j)}(n) \leq \frac{n}{t} \left(z_k^{(j)}(t) + 2z_k^{(j-1)}(t) + z_k^{(j-2)}(t) \right) + z_k^{(j)} \left(\frac{n}{t} \right).
\]

Proof. Define the blocks \(B_1, \ldots, B_6 \) of size \(t \) and the separators \(Y = \{y_0, \ldots, y_b\} \) as in the proof of Recurrence 3.3.

Let \(k_1, k_2, k_3 \) be given, and put \(k = 2k_1 + k_2(k_3 - 2) \). Then, every \(k \)-chain \(C = I_1 \cdots I_k \) satisfies at least one of the following properties:

1. \(C \) is entirely contained within a block \(B_i \).
2. The first \(k_1 \) intervals of \(C \), or the last \(k_1 \) intervals of \(C \), fall entirely within a block \(B_i \), and some other interval of \(C \) contains the separator \(y_j \), or \(y_{j-1} \), respectively.
3. Some \(k_2 \) consecutive intervals of \(C \) fall within a block \(B_i \), and two other intervals contain the separators \(y_{j-1} \) and \(y_j \).
4. At least \(k_3 \) distinct intervals of \(C \) contain separators.

Indeed, the largest number of intervals for which a chain might possibly violate all the above properties is

\[(k_3 - 1) + (k_3 - 2)(k_2 - 1) + 2(k_1 - 1) = k - 1.
\]

(See Figure 4.) Hence, by our choice of \(k \), one of the above properties must hold.

Thus, we can stab all \(k \)-chains by building the following family of \(j \)-tuples. Within each block \(B_i \) we build

- an optimal family of \(j \)-tuples that stab all \(k \)-chains;
- an optimal family of \((j - 1)\)-tuples that stab all \(k_1 \)-chains, where each of these tuples is extended into a \(j \)-tuple in two ways, by appending either of the surrounding separators \(y_{j-1}, y_j \);
- an optimal family of \((j - 2)\)-tuples that stab all \(k_2 \)-chains, where each of these tuples is extended into a \(j \)-tuple by appending both separators \(y_{j-1}, y_j \).

In addition, we construct on the set of separators \(Y \) an optimal family of \(j \)-tuples that stab all \(k_3 \)-chains. Every \(k \)-chain \(C \) must be stabbed by some \(j \)-tuple in this family. The claimed recurrence relation follows. \(\Box \)

Define integer-valued functions \(P_j(m), j, m \geq 2 \), by

\[
P_2(m) = 2; \quad P_3(m) = 2m;
\]

and for \(j \geq 4 \) by

\[
P_j(2) = 2^{j-1};
\]

\[
P_j(m) = P_{j-2}(m)(P_{j-2}(m) - 2) + 2P_{j-1}(m), \quad m \geq 3.
\]
We have \(P_j(m) = 5 \cdot 2^m - 4m - 4 \), and in general, letting \(s = ([j-2]/2) \), one can show that
\[
P_j(m) = \begin{cases}
q((1/s)x^2) + O(m^{-1}), & \text{for } j \text{ even;} \\
q((1/s)x^2) + m + O(m^2), & \text{for } j \text{ odd.}
\end{cases}
\]

Lemma 3.7. Let \(j \geq 2 \) be fixed. Then, there exists a constant \(c = c(j) \) such that, for every \(m \geq 2 \), we have
\[
z_j^{(j)}(m)(n) \leq c\alpha_m(n)^{j-2} \quad \text{for all } n.
\]

Proof sketch. We proceed by induction on \(j \), and for each \(j \) by induction on \(m \). The case \(j = 3 \) is given by Lemmas 3.2 and 3.5, and the case \(m = 2 \) is given by Lemma 3.2.

For the induction on \(m \), we apply Recurrence 3.6 with parameters
\[
k_1 = P_{j-1}(m), \quad k_2 = P_{j-2}(m), \quad k_3 = P_j(m-1),
\]
\[
k = P_j(m), \quad t = 4\alpha_{m-1}(n)^{j-2},
\]
where \(\alpha_m(x) \) is another slight variant of \(\alpha_m(x) \), with recurrence \(\alpha_m(x) = 1 + \alpha_m(4\alpha_m(x)^{j-2}) \) and base case \(\alpha_2(x) = \alpha_2(2x) \). See the full version for more details. \(\Box \)

Let \(P_j^*(m) = P_j(m+1) \) for \(j \geq 4, \ m \geq 2 \). Clearly, \(P_j^*(m) \) satisfies (1.2). There exists a constant \(c' \), depending only on \(j \), such that \(\alpha_{m+1}(n)^{j-2} \leq c'\alpha_m(n) \) for all \(m \) and \(n \). Therefore,
\[
z_j^{(j)}(m)(n) \leq c'' \alpha_{m}(n) \quad \text{for all } n,
\]
for some constant \(c'' = c''(j) \). This proves the upper bounds of Theorem 1.5.

Computational aspects. These upper bounds for \(z_j^{(j)}(n) \) yield algorithms for constructing stabbing families of \(j \)-tuples in linear time in the size of the output. Thus, the weak \(\frac{1}{2} \)-nets of Theorems 1.1 and 1.2 can be easily built in time \(O(n \log r) \), for a given \(n \)-point set \(S \) with the appropriate properties. Consider first the planar case (of Theorem 1.1):

Let \(S = (q_0, \ldots, q_{n-1}) \) be a given list of \(n \) points in the plane in convex position (listed in no particular order). We can build the \(\varepsilon \)-point list \(P = (p_0, \ldots, p_{\ell-1}) \), as given in the proof of Lemma 2.1, in time \(O(n \log \ell) \); we do this by divide and conquer, applying linear-time selection on each step. From the list \(P \), we can obtain our desired weak \(\frac{1}{2} \)-net, of size \(O(\ell) = O(r \alpha(r)) \), in time \(O(\ell) \). Thus, the total running time is \(O(\ell + n \log \ell) = O(n \log r) \). (We may assume that \(\ell \leq n \), for otherwise we can just return \(S \) itself as the desired weak \(\frac{1}{2} \)-net.)

The case of the moment curve is analogous. (Finding the point \(x \) of Lemma 2.2 involves examining a finite number of partitions—a constant-time operation, since \(d \) is constant.)

Figure 5: Blocks and contracted blocks defined in \([1, n]\).

4 Lower bounds for stabbing interval chains

We now derive asymptotic lower bounds for \(z_j^{(j)}(n) \). As before, we take \(j \) to be fixed, recalling that the implicit constants do depend on \(j \). We start with the following simple bound.

Lemma 4.1. For every fixed \(j \geq 3 \) we have
\[
z_j^{(j)}(n)(n) = \Omega(n \log n),
\]
where the constant of proportionality depends on \(j \).

Proof. Let \(t = \lceil n/j \rceil \). Define on the range \([1, n]\) a sequence \(B_1, \ldots, B_t \) of \(j \) blocks of size \(\ell \), where every two consecutive blocks \(B_i, B_{i+1} \) overlap at one element \(y_i \). Also define “contracted” blocks \(B'_1, \ldots, B'_t \) of size \(\ell - 2 \), which do not contain the elements \(y_i \). See Figure 5.

Let \(k = (j - 1)^2 \), and let \(Z \) be a family of \(j \)-tuples that stab all \(k \)-chains in \([1, n]\). \(Z \) must contain, for each block \(B_i \), a complete “local” family of stabbing tuples. Further, these local families are pairwise disjoint.

In addition, \(Z \) must contain “global” tuples—tuples not entirely contained in any \(B_i \). Call an element \(x \in B'_i \) **unused** if \(x \) is not contained in any global tuple of \(Z \).

Suppose each of \(B'_1, B'_2 \) contains a run of \(j - 2 \) consecutive unused elements, and each block \(B'_2, \ldots, B'_{t-1} \) contains a run of \(j - 3 \) consecutive unused elements. Construct a chain \(C \) that has these unused elements as singleton intervals, plus \(j - 1 \) “long” intervals between the runs. Note that the long intervals are nonempty, since each contains an element \(y_i \).

The chain \(C \) has \(j^2 - 2j + 1 = k \) intervals, but it cannot be stabbed by any tuple in \(Z \). It cannot be stabbed by a local tuple, since each block \(B_i \) contains parts of at most \(j - 1 \) intervals; and it cannot be stabbed by a global tuple, since the global tuples can stab only the long intervals, which number only \(j - 1 \).

Therefore, there cannot exist such runs of unused elements. Hence, \(Z \) must contain \(\Omega(n) \) global tuples: At the very least, there must be some \(B'_i \) in which every \((j - 2) \)-nd element is “used” by some global tuple.

We obtain the recurrence relation
\[
z_k^{(j)}(n)(n) \geq jz_k^{(j)} \left(\frac{n}{j} \right) + \Omega(n).
\]

Thus, \(z_k^{(j)}(n)(n) = \Omega(n \log n) \).
\(\Box \)
We can translate this triple back into a triple of elements from \([1, n] \). Let \(z \), \(n \), \(k \) contain unused elements. Let \(a, b, c \in \{1, \ldots, n\} \) be integers provided by the proof above actually grow very fast with \(k \).

This proves the lower bounds of Theorem 1.4.

Remark 4.5. We cannot expect (4.6) to hold for all \(n \), since \(z_k^{(3)}(k) = 1 \). The integers \(n \) provided by the proof above actually grow very fast with \(k \).

Lemma 4.3. We have
\[
z_6^{(3)}(n) = \Omega(n \log \log n).
\]

Proof. Apply Recurrence 4.2 with \(k = 3 \) and \(t = \sqrt{n} \), and use Lemma 3.1. □

Lemma 4.4. There exists an absolute constant \(c_1 \) such that, for all \(k \geq 6 \), we have
\[
z_k^{(3)}(n) \geq c_1 n \alpha(n/3t) \quad \text{for all } n \geq n_k,
\]
for some integers \(n_k \) that depend on \(k \).

Proof sketch. By induction from \(k \) to \(k + 2 \). The base cases are \(k = 6, 7 \), which follow from Recurrence 4.2 by taking \(k = 4 \), \(t = \log n \), and \(k = 5 \), \(t = \log \log n \), respectively. Using the lower bounds of Lemmas 4.1 and 4.3, respectively, we obtain
\[
z_6^{(3)}(n), z_7^{(3)}(n) = \Omega(n \log^* n) = \Omega(n \alpha_3(n)).
\]

From here on, we use induction on \(k \). Let \(m = \lfloor k/2 \rfloor \), and assume by induction that
\[
z_k^{(3)}(n) \geq c_1 n \alpha_m(n) \quad \text{for all } n \geq n_k,
\]
for some constants \(c_1 \) and \(n_k \). Assume without loss of generality that \(2c_1 \leq 1/18 \). We apply Recurrence 4.2 with \(t = \frac{1}{6} (\alpha_m(n) - 1) \). (Note that \(\alpha_m(n) \) grows slowly enough that \(\alpha_m(n/3t) \geq \alpha_m(n) - 1 \) for all large enough \(n \).) We conclude that
\[
z_k^{(3)}(n) \geq c_1 n \alpha_m(n+1) \quad \text{for all } n \geq n_{k+2},
\]
for some large enough integer \(n_{k+2} \). □

4.1 Lower bounds for triples. We now derive lower bounds for \(z_k^{(3)}(n) \) for all \(k \). We use the following recurrence relation.

Recurrence 4.2. Let \(t \) be an integer parameter, with \(3 \leq t \leq \sqrt{n} \). Then,
\[
z_k^{(3)}(n) \geq \frac{n}{t} z_{k+2}^{(3)}(t) + \min \left\{ \frac{n}{18}, z_k^{(3)} \left(\frac{n}{3t} \right) \right\}
\]
for all \(n \geq 36 \).

Proof. Let \(b = \lfloor n/t \rfloor \). Define on \([1, n] \) a sequence \(B_1, \ldots, B_b \) of blocks of size \(t \), where every two consecutive blocks overlap at one element \(y_i \). Also define “contracted” blocks \(B'_1, \ldots, B'_t \) of size \(t - 2 \), as in the proof of Lemma 4.1. See again Figure 5.

Let \(Z \) be a family of triples that stab all \((k+2) \)-chains in \([1, n] \). Again, \(Z \) must contain a complete stabbing family of “local” triples for each block \(B_i \). \(Z \) must also contain “global” triples. Consider again the elements \(x \in B'_t \) which are unused by the global triples.

Suppose that at most half the blocks \(B'_t \) contain unused elements. Then, the number of global triples must be at least \(\frac{1}{3} \cdot \frac{2}{3} (t - 2) \), which is at least \(n/18 \), since \(t \geq 3 \). In this case we are done.

Thus, suppose that at least half the blocks \(B'_t \) contain unused elements. Let \(x_1, \ldots, x_m \) be \(m \) unused elements from \(m \) distinct blocks, with \(m \geq b/2 \). These elements define a sequence of \(m - 1 \) nonempty intervals \(L_1, \ldots, L_{m-1} \) between them, which we call “links” (see Figure 6).

Consider a \(k \)-chain \(C' = I'_1 \cdots I'_{k+1} \) on the links, where \(I'_i = [L_{a_i}, L_{a_{i+1}}] \) for some integers \(a_i, 1 \leq i \leq k + 1 \). We can translate \(C' \) into a \((k+2) \)-chain \(C = I_0 I_1 \cdots I_{k+1} \) on \([1, n] \), as follows: We make the unused elements right before \(I'_1 \) and after \(I'_{k+1} \) into singleton intervals, and we append each intermediate unused element to the link at its right. Then we fuse the links in each \(I'_i \) into one interval. See Figure 7(a, b).

This chain \(C \) cannot be stabbed by any local triple, since each \(B_i \) contains parts of at most two intervals of \(C \). Thus, \(C \) must be stabbed by a global triple \(\tau \). But \(\tau \) must stab three links on three different intervals among \(I_1, \ldots, I_k \). Thus, we can translate \(\tau \) back into a triple of links \(\tau' \) that stabs \(C' \). See Figure 7(c).

Hence, \(Z \) must contain at least \(z_k^{(3)}(m - 1) \) global triples. Finally, note that \(m - 1 \geq n/(3t) \), since \(n \geq 6 \sqrt{n} \) for \(n \geq 36 \). The claimed recurrence relation follows. □

Figure 6: The \(m \) unused elements \(x_1, \ldots, x_m \), from \(m \) distinct blocks, define \(m - 1 \) “links” \(L_1, \ldots, L_{m-1} \).

Figure 7: Every \(k \)-chain \(C' \) on the links \((a) \) can be translated into a \((k+2) \)-chain \(C \) on \([1, n] \) \((b) \). A global triple (marked by ‘s) must stab \(C \) on three distinct links. We can translate this triple back into a triple of links that stabs \(C' \) \((c) \).
4.2 General lower bounds for j-tuples. We now derive general lower bounds for $z^{(j)}_k(n)$, $j \geq 4$. We will construct a sequence of integer-valued functions $Q_j(m)$, $m \geq 2$, such that

\begin{align*}
q^{(j)}_{Q_j(2)}(n) & = \Omega(n \log^{(j-1)} n); \\
q^{(j)}_{Q_j(m)}(n) & = \Omega(n \alpha_{m+1}^{(j-2)}(n)) \\
& = \omega(n \alpha_{m+1}^{(j-2)}(n)), \quad m \geq 3;
\end{align*}

for all $j \geq 4$. (Here, $f^{(j)}$ denotes the j-fold composition of f.)

The case $m = 2$, given by (4.8), is based on the following recurrence relation.

Recurrence 4.6. Let $j \geq 3$ be fixed. Let q be a parameter, with $q \leq n/(3j) - 2$. Let k_1, k_2 be integers, and put $k = 2k_1 + (j - 2)k_2 + j - 1$. Then,

\[
q^{(j)}_k(n) \geq \min \left\{ \frac{n}{3jq} q^{(j-1)}(q), \frac{n}{3jq} q^{(j-2)}(q), \frac{n}{3jq} q^{(j)}(q) + \frac{n}{3jq^2} \right\}
\]

for all $n \geq 6j$.

(See the full version for the proof; it involves dividing the range $[1, n]$ into blocks of size n/j, and dividing each block into sub-blocks of size q.)

Now, let

\[
Q_2(2) = 1; \quad Q_3(2) = 5; \\
Q_j(2) = 2Q_{j-1}(2) + (j - 2)Q_{j-2}(2) + j - 1, \quad j \geq 4.
\]

For $j \geq 4$ we have $Q_j(2) = 15, 49, 163, 577, 2139, \ldots$

Lemma 4.7. For every fixed $j \geq 2$ we have

\[
q^{(j)}_{Q_j(2)}(n) = \Omega(n \log^{(j-1)} n),
\]

where the constant of proportionality depends on j.

Proof sketch. By induction on j. The case $j = 2$ is trivial, since $z^{(2)}_2(n) = \infty$. The case $j = 3$ is given by Lemma 4.3. So let $j \geq 4$. Apply Recurrence 4.6 with

\[
k_1 = Q_{j-1}(2), \quad k_2 = Q_{j-2}(2), \quad k = Q_j(2), \quad q = \log n.
\]

Note that the recurrence relation

\[
f(n) \geq jf\left(\frac{n}{j}\right) + \frac{n}{\log n}
\]

has solution $f(n) = \Omega(n \log \log n)$.

The bounds (4.9) are based on the following recurrence relation.

Recurrence 4.8. Let j be fixed. Let t and q be parameters, with $t \leq \sqrt{n}$ and $q \leq t/9 - 2$. Let k_1, k_2, k_3 be integers, and put $k = 2k_1 + (k_2 + 1)(k_3 - 1) + 1$. Then,

\[
z^{(j)}_k(n) \geq \min \left\{ \frac{n}{9q} z^{(j-1)}_{k_1}(q), \frac{n}{9q} z^{(j-2)}_{k_2}(q), \frac{n}{9q} z^{(j)}_{k_3}(q) \right\} + \frac{n}{t} z^{(j)}_k(t)
\]

for all $n \geq 36$.

(The proof involves dividing $[1, n]$ into blocks of size t, and dividing each block into sub-blocks of size q; see the full version.)

Define integer-valued functions $Q_j(m)$, $j, m \geq 2$, by

\[
Q_2(m) = 1; \quad Q_3(m) = 2m + 1;
\]

and for $j \geq 4$,

\[
Q_j(m) = (1 + Q_{j-2}(m))(Q_j(m - 1) + 2Q_{j-1}(m) + 1), \quad m \geq 3;
\]

with $Q_j(2)$ as defined above.

We have $Q_4(m) = 8 \cdot 2^m - 4m - 9$, and in general, letting $s = \lfloor (j - 2)/2 \rfloor$, one can show that

\[
Q_j(m) = \begin{cases} 2^{(1/s)m^s + O(m^{s-1})}, & \text{for } j \geq 4 \text{ even;} \\ 2^{(1/s)m^s \log_2 m + O(m^s)}, & \text{for } j \geq 3 \text{ odd;}
\end{cases}
\]

just as in the case of $P_j(m)$.

Lemma 4.9. For every $j \geq 2$ and $m \geq 3$ we have

\[
q^{(j)}_{Q_j(m)}(n) = \Omega(n \alpha_{m+1}^{(j-2)}(n))
\]

(where the implicit constants might depend on both m and j).

Proof sketch. The case $j = 2$ is trivial, and the case $j = 3$ is given by Lemma 4.4. So let $j \geq 4$. We apply Recurrence 4.8 with the following parameters:

\[
k_1 = Q_{j-1}(m), \quad k_2 = Q_{j-2}(m), \quad k_3 = Q_j(m - 1), \quad k = Q_j(m).
\]

We first handle the case $m = 3$, by induction on j. For this, let $t = \log^{(j-1)} n$ and $q = \alpha_3(n)$. Note that the recurrence relation

\[
f(n) \geq \frac{n}{t} f(t) + \frac{n}{q}
\]

for our choice of t and q, gives $f(n) = \Omega(n \log \alpha_3(n))$, since $\alpha_3(\log^{(i)} n) = \alpha_3(n) - i$.

Then we handle the general case $m \geq 4$ by induction, setting $t = \alpha_{m-1}^{(j-2)}(n)$ and $q = \alpha_m(n)$. Now the recurrence relation (4.10) has solution $f(n) = \Omega(n \log \alpha_m(n))$.

\qed
Define \(Q'_j(m) \) for \(j \geq 4, \ m \geq 2 \), by

\[
Q'_2(j) = j; \\
Q'_j(m) = Q_j(m - 1), \quad m \geq 3.
\]

Then, using the fact that \(\alpha_{m-1}(n) = \omega(\alpha_m(n)) \) for \(m \geq 2 \), we conclude by Lemmas 3.1, 4.7, and 4.9 that

\[
z_{j}^{(j)}(m)(n) = \omega(n\alpha_m(n)), \quad \text{for all } j \geq 4, m \geq 2.
\]

This proves the lower bounds in Theorem 1.5.

5 Discussion

The most pressing issue is to close the gap between the bounds \(\Omega(r) \) and \(O(r\alpha(r)) \) for the size of weak \(\frac{1}{r} \)-nets for planar sets in convex position. A worst-case bound of \(\Theta(r\alpha(r)) \) would be a major achievement, since there are no known superlinear lower bounds for weak \(\epsilon \)-nets for any fixed dimension \(d \), even for arbitrary point sets.

Another open question is how tight the bounds are for the case of point sets along the moment curve \(\mu_d \). For example, does \(j \) really have to be quadratic in \(d \) in Lemma 2.2?

It would also be nice to find the exact asymptotic form of \(z_{k}^{(j)}(n) \) for every fixed \(j \) and \(k \).

Our divide-and-conquer approach to the problem of stabbing interval chains with triples \((j = 3) \) is very similar to the approach of Alon and Schieber [3], for a problem related to offline computation of partial sums in semigroups (see also [8, 16]). In fact, both problems have the same asymptotic bounds. (However, we are not aware of any explicit reduction between the two problems.)

Our bounds for weak \(\epsilon \)-nets and for stabbing interval chains also bear a remarkable similarity to the bounds on \(\lambda_s(n) \), the maximum length of a Davenport–Schinzel sequence of order \(s \) on \(n \) symbols. The upper and lower bounds for \(\lambda_s(n) \), for fixed \(s \geq 4 \), have the form \(n - 2^{\Omega(\alpha(n))} \), where the degree of the polynomial in the exponent depends linearly in \(s \) (see Sharir and Agarwal [15]). We do not see any connection between the two problems, which makes this all the more surprising. Moreover, our bounds are slightly sharper than those for \(\lambda_s(n) \); this makes us believe that similar improvements can be established for the bounds on \(\lambda_s(n) \).

Acknowledgements. We are grateful to Gil Kalai, who suggested to us the extension to point sets along the moment curve, and provided some ideas on how to implement it.

References