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Abstract

We construct weak ε-nets of almost linear size for certain
types of point sets. Specifically, for planar point sets
in convex position we construct weak 1

r -nets of size
O(rα(r)), where α(r) denotes the inverse Ackermann
function. For point sets along the moment curve in Rd

we construct weak 1
r -nets of size r · 2poly(α(r)), where

the degree of the polynomial in the exponent depends
(quadratically) on d.

Our constructions result from a reduction to a new
problem, which we call stabbing interval chains with
j-tuples. Given the range of integers N = [1, n], an
interval chain of length k is a sequence of k consecutive,
disjoint, nonempty intervals contained in N . A j-
tuple p = (p1, . . . , pj) is said to stab an interval chain
C = I1 · · · Ik if each pi falls on a different interval of
C. The problem is to construct a small-size family Z of
j-tuples that stabs all k-interval chains in N .

Let z
(j)
k (n) denote the minimum size of such a

family Z. We derive almost-tight upper and lower
bounds for z

(j)
k (n) for every fixed j; our bounds involve

functions αm(n) of the inverse Ackermann hierarchy.
Specifically, we show that for j = 3 we have z

(3)
k (n) =

Θ
(
nαbk/2c(n)

)
for all k ≥ 6. For each j ≥ 4 we

construct a pair of functions P ′
j(m), Q′

j(m), almost

equal asymptotically, such that z
(j)
P ′

j(m)(n) = O(nαm(n))

and z
(j)
Q′

j(m)(n) = Ω(nαm(n)).

∗Supported by a USA Israeli BSF grant, by a grant from the
Israel Science Foundation (ISF), and by the Hermann Minkowski–

MINERVA Center for Geometry at Tel Aviv University.
†Supported by ISF Grant 975/06.
‡Supported by ISF Grant 155/05.
§Supported by NSF Grant CCF-05-14079, by a grant from the

U.S.-Israeli Binational Science Foundation, by ISF Grant 155/05,
and by the Hermann Minkowski–MINERVA Center for Geometry

at Tel Aviv University.
¶Work done while the author was a Landau post-doctoral

fellow at the Hebrew University.

1 Introduction

Let S be an n-point set in Rd, and let ε be a real number,
0 < ε < 1. A weak ε-net for S (with respect to convex
sets) is a set of points N ⊂ Rd, such that every convex
set in Rd that contains at least εn points of S contains
a point of N .1 For convenience, we let r = 1/ε, and
we speak of weak 1

r -nets, r > 1, so our bounds increase
with r.

Alon et al. [2] showed that, for every d, for every
finite S ⊂ Rd and every r > 1 there exists a weak 1

r -net
of size at most fd(r), for some family of functions fd,
each depending only on r.

The best known upper bound for the planar case
is f2(r) = O(r2), by Alon et al. [2] (see also Chazelle
et al. [7]). For general d ≥ 3 we have fd(r) =
O

(
rd(log r)c(d)

)
, for some constants c(d). This was first

shown by Chazelle et al. [7], and later on by Matoušek
and Wagner [12] via an alternative, simpler technique.

On the other hand, there are no known lower
bounds for fixed d, besides the trivial fd(r) = Ω(r).
(Matoušek [10] showed, though, that fd(r) increases
exponentially in d for fixed r; specifically, fd(50) =
Ω

(
e
√

d/2
)
.)

If the points of S lie in certain special configura-
tions, better bounds exist on the size of the weak ε-net.
For example, Chazelle et al. [7] showed that if S ⊂ R2

is in convex position, then S has a weak 1
r -net of size

O
(
r(log r)log2 3

)
= O

(
r(log r)1.59

)
. Furthermore, if S is

the vertex set of a regular n-gon, then S admits a weak
1
r -net of size Θ(r).

The techniques of Matoušek and Wagner [12] also
yield improved bounds for some special cases. That is,
they showed that if the points of S ⊂ Rd lie along the
moment curve

µd = {(t, t2, . . . , td) | t ∈ R},(1.1)

1The set N is called a weak ε-net because we do not necessarily

have N ⊆ S; otherwise, N would be a regular (or “strong”) ε-net.
The need to consider weak ε-nets here stems from the fact that

the system of all convex sets in Rd has infinite VC-dimension.

For a full discussion, see Matoušek [11, Ch. 10].



then S has a weak 1
r -net of size O

(
r(log r)c′(d)

)
, for some

constants c′(d) ≈ 2d2 ln d. They also obtained improved
bounds for point sets on algebraic varieties of bounded
degree, among other cases.

Bradford and Capoyleas [5] showed that if S is,
in some sense, uniformly distributed on the (d − 1)-
dimensional sphere, then S has a weak 1

r -net of size
O(r log2 r) (with the constant of proportionality de-
pending on d).

(Aronov et al. [1] have tackled the weak ε-net
problem from another angle, for the planar case: They
seek to determine, given an integer k ≥ 1, the maximum
value rk for which every set S ⊂ R2 has a weak 1

rk
-net

of size k. They derive upper and lower bounds for rk,
for small values of k. Babazadeh and Zarrabi-Zadeh [4]
extended this work to the case d = 3.

Mustafa and Ray [13] have found a connection
between weak ε-nets with respect to convex sets, and
“strong” ε-nets with respect to other set systems with
finite VC-dimension.)

Algorithmic aspects. The constructions of Ma-
toušek and Wagner [12] yield an algorithm for building,
for a given n-point set S ⊂ Rd, d ≥ 2, a weak 1

r -net
of size O(rdpolylog(r)) in time O(n log r). For the case
d = 2, a weak 1

r -net of size O(r2) can be constructed in
time O(nr2), as was shown earlier by Chazelle et al. [6].

Chazelle et al. [6] also show how to determine, in
time O(n3), the largest r for which a given set N is a
weak 1

r -net of a given planar n-point set S. There is no
known polynomial-time algorithm for this problem for
dimensions 3 and larger.

Our results. In this paper we derive improved
upper bounds for two of the above-mentioned cases:
namely, for planar point sets in convex position, and
for point sets along the moment curve µd (1.1). Our
bounds involve the inverse Ackermann function α(r),
and are as follows:

Theorem 1.1. Let S be an n-point set in convex po-
sition in the plane. Then, S has a weak 1

r -net of size
O(rα(r)).

Theorem 1.2. Let S be a set of n points along the d-
dimensional moment curve µd, d ≥ 3. Let

j =
{

(d2 + d)/2, d even;
(d2 + 1)/2, d odd;

and let s = b(j − 2)/2c. Then, S has a weak 1
r -net of

size
r · 2O(α(r)s), j even;
r · 2O(α(r)s log α(r)), j odd .

(Note that j is even if and only if d is divisible by 4.)

Furthermore, these weak 1
r -nets can be easily con-

structed in time O(n log r).

Figure 1: A 9-chain stabbed by a 5-tuple.

1.1 The inverse Ackermann function. We briefly
introduce (our version of) the inverse Ackermann func-
tions αk(x) and α(x).

The inverse Ackermann hierarchy is defined as
follows. Let α1(x) = x/2, and for each k ≥ 2, let αk(x)
be the number of times we have to apply αk−1, starting
from x, until we reach a value not larger than 1. In
other words, for k ≥ 2, let

αk(x) =
{

0, if x ≤ 1;
1 + αk(αk−1(x)), otherwise.

We have α2(x) = dlog2 xe for x ≥ 1, and α3(x) = log∗ x.
(Note that αk(x) is always an integer for k ≥ 2.)

Now, for every fixed x ≥ 6, the sequence
α1(x), α2(x), α3(x), . . . decreases strictly until it settles
at 3. The inverse Ackermann function2 α(x) assigns
to each real number x the smallest integer k for which
αk(x) ≤ 3:

α(x) = min {k | αk(x) ≤ 3}.

1.2 Interval chains. Our constructions of weak ε-
nets follow by a reduction to a new problem, which we
call stabbing interval chains.

Let [i, j] denote the interval of integers {i, i +
1, . . . , j}; the case i = j is also denoted as [i]. An
interval chain3 of size k (also called a k-chain) is a
sequence of k consecutive, disjoint, nonempty intervals

C = I1I2 · · · Ik = [a1, a2][a2 + 1, a3] · · · [ak + 1, ak+1],

where a1 ≤ a2 < a3 < · · · < ak+1. We say that a j-tuple
of integers (p1, . . . , pj) stabs an interval chain C if each
pi lies in a different interval of C (see Figure 1).

Our problem is to stab, with as few j-tuples as
possible, all interval chains of size k that lie within a
given range [1, n].

Definition 1.3. Let z
(j)
k (n) denote the minimum size

of a collection Z of j-tuples that stab all k-chains that
lie in [1, n].

2We follow Seidel [14, slide 85]. The function α(x) is usually

defined slightly differently (see, for example, [11, p. 173], though
there are other versions), but all variants are equivalent up to an

additive constant.
3An identical definition of interval chains has already been

given by Condon and Saks [9], for an unrelated application.



Note that z
(j)
k (n) is increasing in n, decreasing in k,

and increasing in j.
In this paper we derive almost-tight upper and lower

bounds for z
(j)
k (n), involving functions in the inverse

Ackermann hierarchy. Our upper bounds for z
(j)
k (n) are

used in the proofs of Theorems 1.1 and 1.2 above. The
case j = 3 (which is the one needed for Theorem 1.1) is
simpler (and tighter) than the general case j ≥ 4, and
we treat this case separately, both in the upper and the
lower bounds.

Our bounds for stabbing interval chains are as
follows:

Theorem 1.4. z
(3)
k (n) satisfies the following bounds:

z
(3)
3 (n) =

(
n− 1

2

)
; z

(3)
4 (n) = Θ(n log n);

z
(3)
5 (n) = Θ(n log log n);

and, for every k ≥ 6, we have

z
(3)
k (n) ≤ cnαbk/2c(n) for all n;

z
(3)
k (n) ≥ c′nαbk/2c(n) for all n ≥ nk;

for some absolute constants c and c′, and some con-
stants nk depending on k.

Theorem 1.5. Let j ≥ 4 be fixed, and let s = b(j −
2)/2c. Then there exist functions P ′

j(m), Q′
j(m), both

of the form

P ′
j(m), Q′

j(m)(1.2)

=
{

2(1/s!)ms+O(ms−1), j even;
2(1/s!)ms log2 m+O(ms), j odd;

such that, for every m ≥ 2, we have

z
(j)
P ′

j(m)(n) ≤ cnαm(n) for all n;

z
(j)
Q′

j(m)(n) ≥ nαm(n) for all n ≥ nm.

Here c = c(j) is a constant that depends only on j, and
nm = nm(j) are constants that depend on j and m.

Thus, for every fixed j, once k is sufficiently large,
z
(j)
k (n) becomes barely superlinear in n. Moreover, if

we let k grow as an appropriate function of α(n), then
the upper bounds become linear. Namely, we have
z
(3)
k (n) = O(n) for k ≥ 2α(n); and for j ≥ 4, we have

z
(j)
k (n) = O(n) for k ≥ P ′

j(α(n)).
In the full version of this paper we also prove the

following bound for stabbing with pairs (j = 2):

Lemma 1.6. We have
n

bk/2c
− 3 ≤ z

(2)
k (n) ≤ n

bk/2c
− 1.

2 From weak ε-nets to interval chains

In this section we present constructions of weak ε-nets
that reduce to problems of stabbing interval chains with
j-tuples. We first address the case when S is planar and
in convex position, and then we tackle the case where S
lies on the moment curve in Rd (as well as some related
cases).

Lemma 2.1. Let S be a set of n points in convex
position in the plane, and let r > 1. Then S has a
weak 1

r -net of size z
(3)
`/r−1(`), where ` is a free parameter

with 4r ≤ ` < n.

Proof. Partition the points of S into ` “blocks”
B0, B1, . . . , B`−1 of n/` consecutive points, clockwise
along the boundary of CH(S). Construct a set of points
P = {p0, p1, . . . , p`−1}, where each pj lies on the bound-
ary of CH(S) between the last point of Bj−1 and the first
point of Bj . (Indices are modulo `. See Figure 2(a).)

Consider a subset S′ ⊂ S of size at least n/r. S′

must contain m = `/r points q0, q1, . . . , qm−1 lying on
m distinct blocks. Let Bjk

be the block containing qk,
with 0 ≤ j0 < j1 < · · · < jm−1 < `. The blocks Bjk

partition P cyclically into m nonempty intervals

Ik = {pjk+1, pjk+2, . . . , pjk+1}, for 0 ≤ k < m.

(Indices are modulo ` or modulo m as appropriate.)
Let pa, pb, pc, pd ∈ P be four points belonging to four
different intervals Ik, listed in cyclic order. Then the
intersection between the segments papc and pbpd must
lie inside CH(q0, . . . , qm−1) ⊆ CH(S′). See Figure 2(b).4

Thus, it is enough to construct a set of quadruples
of points of P , such that, no matter how P is cyclically
partitioned into m intervals I0I1 · · · Im−1, some quadru-
ple will “stab” four different intervals. The set of chord-
intersection points corresponding to these quadruples is
our desired weak 1

r -net.
We take point p0 as the first point for all the

quadruples; by construction, p0 lies in the last interval
Im−1. Thus, it only remains to build a family Z of
triples of the form (pa, pb, pc), with 1 ≤ a < b <
c < `, such that some triple is guaranteed to fall on
three distinct intervals among I0, . . . , Im−2, in any given
cyclic chain I0, . . . , Im−1.

But this is isomorphic to the problem of stabbing
all (m− 1)-chains in [1, `− 1] with triples. Thus, there
exists a family Z of size at most z

(3)
m−1(`) = z

(3)
`/r−1(`).

�

Proof of Theorem 1.1. By Theorem 1.4 we have

z
(3)
`/r−1(`) = O(`α`/(2r)−1(`)).(2.3)

4This basic idea, initially observed by Emo Welzl, already
appears in [7].



Figure 2: (a) “Separator” points pj between consecutive blocks. (b) The intersection between two chords joining
pairs of points from four different intervals falls inside CH(S′).

We take ` = 2r(1 + α(r)), so `/(2r) − 1 = α(r). It can
be shown that αα(r)(`) ≤ 4 for all large enough r (recall
that αα(r)(r) ≤ 3 by definition). Hence, (2.3) becomes
O(rα(r)). �

2.1 Point sets along the moment curve. A sim-
ilar reduction applies to the case when S is a set of n
points along the moment curve µd (1.1). This curve has
the property that every hyperplane intersects it in at
most d points (see, e.g., Matoušek [11, p. 97]).

If A and B are two finite sets of points along µd, we
say that A and B are interleaving if between every two
points of A there is a point of B and vice versa. In such
a case, we must have

∣∣|A| − |B|
∣∣ ≤ 1.

Lemma 2.2. Let s = d(d + 1)/2e, and let j = (s −
1)(d+1)+1. (Thus, j = (d2 + d+2)/2 for d even, and
j = (d2 + 1)/2 for d odd.)

Let A be a set of j points along the moment curve
µd ⊂ Rd. Then there exists a point x ∈ CH(A) with
the following property: For every point set B ⊂ µd

interleaving with A, with

|B| =
{

j, d even,
j + 1, d odd,

we have x ∈ CH(B).

Proof. By Tverberg’s Theorem (see, e.g., [11, p. 200]),
A can be partitioned into s pairwise disjoint subsets
A1, . . . , As, whose convex hulls all contain some com-
mon point x. This point x satisfies the assertion of the
lemma, for if x 6∈ CH(B), then there would exist a hy-
perplane h that separates x from B. But there must
be at least s points of A in the same side of h as x (at
least one from each part Ai). By continuity, and since
A and B are interleaving, it follows that the curve µd

must intersect h at least 2s − 1 times if d is even, or
2s times if d is odd. In either case, this quantity equals
d + 1, a contradiction.5 �

5The above argument is very similar to the one used by

The reduction from weak ε-nets to stabbing interval
chains with j-tuples is now straightforward:

Lemma 2.3. Let S be a set of n points along the
moment curve µd, and let r > 1. Let

j′ =
{

(d2 + d)/2, d even;
(d2 + 1)/2, d odd.

Then S has a weak 1
r -net of size at most z

(j′)
`/r−1(`), where

` is a free parameter with (j′ + 1)r ≤ ` < n.

Proof. Partition S into ` blocks B0, B1, . . . , B`−1 of n/`
consecutive points. Construct a set of points P =
{p1, . . . , p`−1} ⊂ µd, where each pi lies between the last
point of Bi−1 and the first point of Bi. Take also a point
p` ∈ µd lying after B`−1.

Consider a set S′ ⊂ S of size at least n/r. S′

must contain m = `/r points q1, . . . , qm lying on m
different blocks. These points determine an (m − 1)-
chain C = I1 · · · Im−1 on P .

Thus, construct an optimal family Z ′ of j′-tuples of
points in P that stab all such (m − 1)-chains. Append
the point p` to every such j′-tuple, obtaining a family
Z of (j′ + 1)-tuples (actually, this is necessary only
for d even). There must exist some (j′ + 1)-tuple
p ∈ Z whose first j′ points stab the chain C. By
Lemma 2.2, there exists a point x = x(p) which lies
in CH(q1, . . . , qm) ⊆ CH(S′). Therefore, the set of all
such points x(p), p ∈ Z, is our desired weak 1

r -net. It

has size at most z
(j′)
m−1(`− 1). �

Proof of Theorem 1.2. Take ` = r(1 + P ′
j′(α(r))), with

P ′
j′(m) as given in Theorem 1.5. Then, arguing as

before,

z
(j′)
`/r−1(`) = z

(j′)
P ′

j′ (α(r))(`) ≤ c`αα(r)(`) ≤ 4c`.

The claim follows. �

Matoušek and Wagner [12], applied to a different construction.



Remark 2.4. These results can be generalized to curves
γ ⊂ Rd with the property that every hyperplane inter-
sects γ at most q times, for some integer q ≥ d. We
obtain weak 1

r -nets of size r ·2poly(α(r)) for point sets on
such curves. (The methods of [12] yield weak 1

r -nets of
size O(r polylog(r)) for these point sets.)

3 Upper bounds for stabbing interval chains

In this section we derive upper bounds on z
(j)
k (n), the

minimum number of j-tuples needed to stab all k-
interval chains in [1, n]. We will always take j to be
a constant, noting that the constants implicit in the
asymptotic notations do depend on j (though neither
on k nor on n).

We start with the following two simple bounds. We
omit the proof of the first.

Lemma 3.1. For all j ≥ 2 we have

z
(j)
j (n) =

(
n− bj/2c
dj/2e

)
= Θ

(
ndj/2e

)
.

Lemma 3.2. For every fixed j ≥ 2 we have

z
(j)
2j−1(n) = O

(
n logj−2 n

)
.

Proof sketch. The case j = 2 is given by Lemma 3.1, so
let j ≥ 3. Put k = 2j−1. Divide the range [1, n] into
two blocks, each of size at most n/2, leaving between
them the element y = dn/2e. Recursively build, for
each block, a family of j-tuples that stab all k-chains
contained in the block. In addition build, for each block,
a family of (j− 1)-tuples that stab all k/2-chains in the
block, and append the element y to each (j − 1)-tuple.

The result is a family of j-tuples that stab all k-
chains in [1, n]. Thus, by induction on j,

z
(j)
k (n) ≤ 2z

(j)
k

(n

2

)
+ O

(
n logj−3 n

)
. �

We now derive upper bounds for z
(j)
k (n) for all k.

We first tackle the case j = 3 (the one used in the proof
of Theorem 1.1), and then we briefly address the general
case j ≥ 4.

3.1 Upper bounds for triples. We have seen that
z
(3)
3 (n) =

(
n−1

2

)
(Lemma 3.1) and z

(3)
4 (n) = O(n log n)

(Lemma 3.2). Our bounds for stabbing k-chains with
triples, k ≥ 5, are based on the following recurrence
relation.

Recurrence 3.3. Let t be an integer parameter, with
1 ≤ t ≤

√
n/2− 1. Then,

z
(3)
k (n) ≤ n

t
z
(3)
k (t) + z

(3)
k−2

(n

t

)
+ 2n.

Figure 3: A k-chain C must satisfy exactly one of these
three properties.

Proof. Partition the range [1, n] into blocks
B1, B2, . . . , Bb of size t (except for the last block,
which might be smaller), leaving between each pair of
adjacent blocks, as well as before the first block and
after the last one, a single “separator” element. Let the
set of separators be Y = {y0, . . . , yb}, such that block
Bi lies between separators yi−1 and yi.

The number of blocks is b =
⌈

n−1
t+1

⌉
. We have

b ≤ n/t− 1, since n ≥ 2(t + 1)2 ≥ 2t2 + t.
Now, every k-chain C = I1 · · · Ik must satisfy

exactly one of the following properties (see Figure 3):

1. C is entirely contained within a block Bi.

2. Every interval of C, except possibly the first and
the last, contains a separator.

3. Some interval Ij of C, 2 ≤ j ≤ k − 1, falls
entirely within a block Bi, and another interval of
C contains either yi−1 or yi.

We can take care of the first case by constructing
within each block Bi an optimal family of triples that
stab all k-chains. The second case is handled by
constructing on the separators Y an optimal family of
triples that stab all (k − 2)-chains. And the third case
is handled by taking all triples of the forms

(a, a + 1, yi), for yi−1 ≤ a ≤ yi − 2,

(yi−1, a, a + 1), for yi−1 < a ≤ yi − 1,

for all yi. There are at most 2n such triples. We obtain
the claimed recurrence relation. �

Lemma 3.4. We have z
(3)
5 (n) = O(n log log n).

Proof. Apply Recurrence 3.3 with k = 5 and t =
√

n/3,
and use Lemma 3.1. �

Lemma 3.5. There exists an absolute constant c such
that, for every k ≥ 6, we have

z
(3)
k (n) ≤ cnαbk/2c(n) for all n.



Proof. It is convenient to work with a slight variant of
the inverse Ackermann function. Let n0 = 2000, and
define α̂m(x), m ≥ 2, by α̂2(x) = α2(x) = dlog2 xe, and
for m ≥ 3 by the recurrence

α̂m(x) =
{

1, if x ≤ n0;
1 + α̂m(2α̂m−1(x)), otherwise.

One can show (see the full version) that there exists a
constant c0 such that |α̂m(x) − αm(x)| ≤ c0 for all m
and x.

Let k ≥ 4, and let m = bk/2c. We prove, by
induction on k, that

z
(3)
k (n) ≤ c1nα̂m(n) for all n,(3.4)

for some absolute constant c1 (which can be assumed
large enough). The base cases of the induction are
z
(3)
4 (n), z(3)

5 (n) = O(n log n), by Lemmas 3.2 and 3.4,
respectively.

Let now k ≥ 6, and assume (3.4) holds for k − 2.
We want to establish (3.4) for k. The case n ≤ n0

holds if c1 is large enough (recall that z
(3)
k (n) decreases

with k), so assume n > n0. We apply Recurrence
3.3 with t = 2α̂m−1(n). (Note that t ≤

√
n/2 − 1

for n > n0.) Letting z
(3)
k (n) = ng(n), observing that

α̂m−1(n/t) ≤ α̂m−1(n), and assuming that c1 ≥ 4, we
obtain

g(n) ≤ g(t) + c1.

Since α̂m(t) = α̂m(n) − 1, it follows by induction on n
(with base case n ≤ n0) that g(n) ≤ c1α̂m(n) for all n.
Therefore, (3.4) also holds for k, and we are done. �

This proves the upper bounds of Theorem 1.4.

3.2 From triples to j-tuples. We now derive upper
bounds for z

(j)
k (n), j ≥ 4. Our bounds are based on the

following recurrence relation.

Recurrence 3.6. Let j ≥ 4 be fixed. Let t be a
parameter, 1 ≤ t ≤

√
n/2 − 1, and let k1, k2, k3 be

integers. Put k = 2k1 + k2(k3 − 2). Then,

z
(j)
k (n) ≤ n

t

(
z
(j)
k (t) + 2z

(j−1)
k1

(t) + z
(j−2)
k2

(t)
)

+z
(j)
k3

(n

t

)
.

Proof. Define the blocks B1, . . . , Bb of size t and the
separators Y = {y0, . . . , yb} as in the proof of Recur-
rence 3.3.

Let k1, k2, k3 be given, and put k = 2k1+k2(k3−2).
Then, every k-chain C = I1 · · · Ik satisfies at least one
of the following properties:

Figure 4: A chain which violates all three properties,
like the one shown, can have at most k − 1 intervals.

1. C is entirely contained within a block Bi.

2. The first k1 intervals of C, or the last k1 intervals
of C, fall entirely within a block Bi, and some
other interval of C contains the separator yi or yi−1,
respectively.

3. Some k2 consecutive intervals of C fall within
a block Bi, and two other intervals contain the
separators yi−1 and yi.

4. At least k3 distinct intervals of C contain separa-
tors.

Indeed, the largest number of intervals for which a chain
might possibly violate all the above properties is

(k3 − 1) + (k3 − 2)(k2 − 1) + 2(k1 − 1) = k − 1.

(See Figure 4.) Hence, by our choice of k, one of the
above properties must hold.

Thus, we can stab all k-chains by building the
following family of j-tuples. Within each block Bi we
build

• an optimal family of j-tuples that stab all k-chains;

• an optimal family of (j−1)-tuples that stab all k1-
chains, where each of these tuples is extended into
a j-tuple in two ways, by appending either of the
surrounding separators yi−1, yi;

• an optimal family of (j−2)-tuples that stab all k2-
chains, where each of these tuples is extended into
a j-tuple by appending both separators yi−1, yi.

In addition, we construct on the set of separators Y
an optimal family of j-tuples that stab all k3-chains.
Every k-chain C must be stabbed by some j-tuple in
this family. The claimed recurrence relation follows. �

Define integer-valued functions Pj(m), j,m ≥ 2, by

P2(m) = 2; P3(m) = 2m;

and for j ≥ 4 by

Pj(2) = 2j−1;
Pj(m) = Pj−2(m) (Pj(m− 1)− 2)

+ 2Pj−1(m), m ≥ 3.



We have P4(m) = 5 · 2m − 4m − 4, and in general,
letting s = b(j − 2)/2c, one can show that

Pj(m) =
{

2(1/s!)ms+O(ms−1), for j even;
2(1/s!)ms log2 m+O(ms), for j odd.

Lemma 3.7. Let j ≥ 2 be fixed. Then, there exists a
constant c = c(j) such that, for every m ≥ 2, we have

z
(j)
Pj(m)(n) ≤ cnαm(n)j−2 for all n.(3.5)

Proof sketch. We proceed by induction on j, and for
each j by induction on m. The case j = 3 is given by
Lemmas 3.2 and 3.5, and the case m = 2 is given by
Lemma 3.2.

For the induction on m, we apply Recurrence 3.6
with parameters

k1 = Pj−1(m), k2 = Pj−2(m), k3 = Pj(m− 1),
k = Pj(m), t = 4α̂m−1(n)j−2,

where α̂m(x) is another slight variant of αm(x), with
recurrence α̂m(x) = 1+α̂m

(
4α̂m−1(x)j−2

)
and base case

α̂2(x) = α2(x). See the full version for more details. �

Let P ′
j(m) = Pj(m + 1) for j ≥ 4, m ≥ 2.

Clearly, P ′
j(m) satisfies (1.2). There exists a constant c′,

depending only on j, such that αm+1(n)j−2 ≤ c′αm(n)
for all m and n. Therefore,

z
(j)
P ′

j(m)(n) ≤ c′′nαm(n) for all n,

for some constant c′′ = c′′(j). This proves the upper
bounds of Theorem 1.5.

Computational aspects. These upper bounds
for z

(j)
k (n) yield algorithms for constructing stabbing

families of j-tuples in linear time in the size of the out-
put. Thus, the weak 1

r -nets of Theorems 1.1 and 1.2 can
be easily built in time O(n log r), for a given n-point set
S with the appropriate properties. Consider first the
planar case (of Theorem 1.1):

Let S = (q0, . . . , qn−1) be a given list of n points
in the plane in convex position (listed in no particular
order). We can build the `-point list P = (p0, . . . , p`−1),
as given in the proof of Lemma 2.1, in time O(n log `);
we do this by divide and conquer, applying linear-time
selection on each step. From the list P , we can obtain
our desired weak 1

r -net, of size O(`) = O(rα(r)), in time
O(`). Thus, the total running time is O(` + n log `) =
O(n log r). (We may assume that ` ≤ n, for otherwise
we can just return S itself as the desired weak 1

r -net.)
The case of the moment curve is analogous. (Find-

ing the point x of Lemma 2.2 involves examining a finite
number of partitions—a constant-time operation, since
d is constant.)

Figure 5: Blocks and contracted blocks defined in [1, n].

4 Lower bounds for stabbing interval chains

We now derive asymptotic lower bounds for z
(j)
k (n). As

before, we take j to be fixed, recalling that the implicit
constants do depend on j. We start with the following
simple bound.

Lemma 4.1. For every fixed j ≥ 3 we have

z
(j)
(j−1)2(n) = Ω(n log n),

where the constant of proportionality depends on j.

Proof. Let t = dn/je. Define on the range [1, n] a
sequence B1, . . . , Bj of j blocks of size t, where every
two consecutive blocks Bi, Bi+1 overlap at one element
yi. Also define “contracted” blocks B′

1, . . . , B
′
j of size

t−2, which do not contain the elements yi. See Figure 5.
Let k = (j − 1)2, and let Z be a family of j-tuples

that stab all k-chains in [1, n]. Z must contain, for each
block Bi, a complete “local” family of stabbing tuples.
Further, these local families are pairwise disjoint.

In addition, Z must contain “global” tuples—tuples
not entirely contained in any Bi. Call an element x ∈ B′

i

unused if x is not contained in any global tuple of Z.
Suppose each of B′

1, B′
j contains a run of j− 2 con-

secutive unused elements, and each block B′
2, . . . , B

′
j−1

contains a run of j − 3 consecutive unused elements.
Construct a chain C that has these unused elements as
singleton intervals, plus j − 1 “long” intervals between
the runs. Note that the long intervals are nonempty,
since each contains an element yi.

The chain C has j2 − 2j + 1 = k intervals, but
it cannot be stabbed by any tuple in Z: It cannot be
stabbed by a local tuple, since each block Bi contains
parts of at most j−1 intervals; and it cannot be stabbed
by a global tuple, since the global tuples can stab only
the long intervals, which number only j − 1.

Therefore, there cannot exist such runs of unused
elements. Hence, Z must contain Ω(n) global tuples:
At the very least, there must be some B′

i in which every
(j − 2)-nd element is “used” by some global tuple.

We obtain the recurrence relation

z
(j)
k (n) ≥ jz

(j)
k

(
n

j

)
+ Ω(n).

Thus, z
(j)
k (n) = Ω(n log n). �



Figure 6: The m unused elements x1, . . . , xm, from m
distinct blocks, define m− 1 “links” L1, . . . , Lm−1.

Figure 7: Every k-chain C ′ on the links (a) can be
translated into a (k + 2)-chain C on [1, n] (b). A global
triple (marked by x’s) must stab C on three distinct
links. We can translate this triple back into a triple of
links that stabs C ′ (c).

4.1 Lower bounds for triples. We now derive
lower bounds for z

(3)
k (n) for all k. We use the following

recurrence relation.

Recurrence 4.2. Let t be an integer parameter, with
3 ≤ t ≤

√
n. Then,

z
(3)
k+2(n) ≥ n

t
z
(3)
k+2(t) + min

{ n

18
, z

(3)
k

( n

3t

)}
for all n ≥ 36.

Proof. Let b = dn/te. Define on [1, n] a sequence
B1, . . . , Bb of b blocks of size t, where every two con-
secutive blocks overlap at one element yi. Also define
“contracted” blocks B′

1, . . . , B
′
b of size t − 2, as in the

proof of Lemma 4.1. See again Figure 5.
Let Z be a family of triples that stab all (k + 2)-

chains in [1, n]. Again, Z must contain a complete
stabbing family of “local” triples for each block Bi. Z
must also contain “global” triples. Consider again the
elements x ∈ B′

i which are unused by the global triples.
Suppose that at most half the blocks B′

i contain
unused elements. Then, the number of global triples
must be at least 1

3 ·
b
2 (t − 2), which is at least n/18,

since t ≥ 3. In this case we are done.
Thus, suppose that at least half the blocks B′

i

contain unused elements. Let x1, . . . , xm be m unused
elements from m distinct blocks, with m ≥ b/2. These
elements define a sequence of m− 1 nonempty intervals
L1, . . . , Lm−1 between them, which we call “links” (see
Figure 6).

Consider a k-chain C ′ = I ′1 · · · I ′k on the links,
where I ′i = [Lai

, Lai+1−1] for some integers ai, 1 ≤

i ≤ k + 1. We can translate C ′ into a (k + 2)-
chain C = I0I1 · · · Ik+1 on [1, n], as follows: We make
the unused elements right before I ′1 and after I ′k into
singleton intervals, and we append each intermediate
unused element to the link at its right. Then we fuse
the links in each I ′i into one interval. See Figure 7(a,b).

This chain C cannot be stabbed by any local triple,
since each Bi contains parts of at most two intervals of
C. Thus, C must be stabbed by a global triple τ . But τ
must stab three links on three different intervals among
I1, . . . , Ik. Thus, we can translate τ back into a triple
of links τ ′ that stabs C ′. See Figure 7(c).

Hence, Z must contain at least z
(3)
k (m − 1) global

triples. Finally, note that m−1 ≥ n/(3t), since n ≥ 6
√

n
for n ≥ 36. The claimed recurrence relation follows. �

Lemma 4.3. We have

z
(3)
5 (n) = Ω(n log log n).

Proof. Apply Recurrence 4.2 with k = 3 and t =
√

n,
and use Lemma 3.1. �

Lemma 4.4. There exists an absolute constant c1 such
that, for all k ≥ 6, we have

z
(3)
k (n) ≥ c1nαbk/2c(n) for all n ≥ nk,(4.6)

for some integers nk that depend on k.

Proof sketch. By induction from k to k + 2. The base
cases are k = 6, 7, which follow from Recurrence 4.2
by taking k = 4, t = log n, and k = 5, t = log log n,
respectively. Using the lower bounds of Lemmas 4.1
and 4.3, respectively, we obtain

z
(3)
6 (n), z

(3)
7 (n) = Ω(n log∗ n) = Ω(nα3(n)).

From here on, we use induction on k. Let m =
bk/2c, and assume by induction that

z
(3)
k (n) ≥ c1nαm(n), for all n ≥ nk,(4.7)

for some constants c1 and nk. Assume without loss of
generality that 2c1 ≤ 1/18. We apply Recurrence 4.2
with t = 1

6 (αm(n)− 1). (Note that αm(n) grows slowly
enough that αm(n/(3t)) ≥ αm(n)−1 for all large enough
n.) We conclude that

z
(3)
k+2(n) ≥ c1nαm+1(n), for all n ≥ nk+2,

for some large enough integer nk+2. �

Remark 4.5. We cannot expect (4.6) to hold for all n,
since z

(3)
k (k) = 1. The integers nk provided by the proof

above actually grow very fast with k.

This proves the lower bounds of Theorem 1.4.



4.2 General lower bounds for j-tuples. We now
derive general lower bounds for z

(j)
k (n), j ≥ 4. We will

construct a sequence of integer-valued functions Qj(m),
m ≥ 2, such that

z
(j)
Qj(2)

(n) = Ω
(
n log(j−1) n

)
;(4.8)

z
(j)
Qj(m)(n) = Ω

(
nα(j−2)

m (n)
)

(4.9)

= ω(nαm+1(n)), m ≥ 3;

for all j ≥ 4. (Here, f (j) denotes the j-fold composition
of f .)

The case m = 2, given by (4.8), is based on the
following recurrence relation.

Recurrence 4.6. Let j ≥ 3 be fixed. Let q be a
parameter, with q ≤ n/(3j)− 2. Let k1, k2 be integers,
and put k = 2k1 + (j − 2)k2 + j − 1. Then,

z
(j)
k (n) ≥ min

{
n

3jq
z
(j−1)
k1

(q),
n

3jq
z
(j−2)
k2

(q),

jz
(j)
k

(
n

j

)
+

n

3j2q

}
for all n ≥ 6j.

(See the full version for the proof; it involves
dividing the range [1, n] into blocks of size n/j, and
dividing each block into sub-blocks of size q.)

Now, let

Q2(2) = 1; Q3(2) = 5;
Qj(2) = 2Qj−1(2) + (j − 2)Qj−2(2) + j − 1, j ≥ 4.

For j ≥ 4 we have Qj(2) = 15, 49, 163, 577, 2139, . . ..

Lemma 4.7. For every fixed j ≥ 2 we have

z
(j)
Qj(2)

(n) = Ω
(
n log(j−1) n

)
,

where the constant of proportionality depends on j.

Proof sketch. By induction on j. The case j = 2 is
trivial, since z

(2)
1 (n) = ∞. And the case j = 3 is given

by Lemma 4.3. So let j ≥ 4. Apply Recurrence 4.6 with

k1 = Qj−1(2), k2 = Qj−2(2), k = Qj(2), q = log n.

Note that the recurrence relation

f(n) ≥ jf

(
n

j

)
+

n

log n

has solution f(n) = Ω(n log log n). �

The bounds (4.9) are based on the following recur-
rence relation.

Recurrence 4.8. Let j be fixed. Let t and q be
parameters, with t ≤

√
n and q ≤ t/9 − 2. Let k1, k2,

k3 be integers, and put k = 2k1 + (k2 + 1)(k3 − 1) + 1.
Then,

z
(j)
k (n) ≥ min

{
n

9q
z
(j−1)
k1

(q),
n

9q
z
(j−2)
k2

(q),

n

t
z
(j)
k (t) + min

{
n

9jq
, z

(j)
k3

( n

3t

)}}
for all n ≥ 36.

(The proof involves dividing [1, n] into blocks of size
t, and dividing each block into sub-blocks of size q; see
the full version.)

Define integer-valued functions Qj(m), j, m ≥ 2, by

Q2(m) = 1; Q3(m) = 2m + 1;

and for j ≥ 4,

Qj(m) =
(
1 + Qj−2(m)

)(
Qj(m− 1)− 1

)
+ 2Qj−1(m) + 1, m ≥ 3;

with Qj(2) as defined above.
We have Q4(m) = 8 · 2m − 4m− 9, and in general,

letting s = b(j − 2)/2c, one can show that

Qj(m) =
{

2(1/s!)ms+O(ms−1), for j ≥ 4 even;
2(1/s!)ms log2 m+O(ms), for j ≥ 3 odd;

just as in the case of Pj(m).

Lemma 4.9. For every j ≥ 2 and m ≥ 3 we have

z
(j)
Qj(m)(n) = Ω

(
nα(j−2)

m (n)
)

(where the implicit constants might depend on both m
and j).

Proof sketch. The case j = 2 is trivial, and the case
j = 3 is given by Lemma 4.4. So let j ≥ 4. We apply
Recurrence 4.8 with the following parameters:

k1 = Qj−1(m), k2 = Qj−2(m), k3 = Qj(m− 1),
k = Qj(m).

We first handle the case m = 3, by induction on j. For
this, let t = log(j−1) n and q = α3(n). Note that the
recurrence relation

f(n) ≥ n

t
f(t) +

n

q
,(4.10)

for our choice of t and q, gives f(n) = Ω(n log α3(n)),
since α3

(
log(i) n

)
= α3(n)− i.

Then we handle the general case m ≥ 4 by in-
duction, setting t = α

(j−2)
m−1 (n) and q = αm(n). Now

the recurrence relation (4.10) has solution f(n) =
Ω(n log αm(n)). �



Define Q′
j(m) for j ≥ 4, m ≥ 2, by

Q′
j(2) = j;

Q′
j(m) = Qj(m− 1), m ≥ 3.

Then, using the fact that α
(j−1)
m−1 (n) = ω(αm(n)) for

m ≥ 2, we conclude by Lemmas 3.1, 4.7, and 4.9 that

z
(j)
Q′

j(m)(n) = ω(nαm(n)), for all j ≥ 4,m ≥ 2.

This proves the lower bounds in Theorem 1.5.

5 Discussion

The most pressing issue is to close the gap between the
bounds Ω(r) and O(rα(r)) for the size of weak 1

r -nets
for planar sets in convex position. A worst-case bound
of Θ(rα(r)) would be a major achievement, since there
are no known superlinear lower bounds for weak ε-nets
for any fixed dimension d, even for arbitrary point sets.

Another open question is how tight the bounds are
for the case of point sets along the moment curve µd.
For example, does j really have to be quadratic in d in
Lemma 2.2?

It would also be nice to find the exact asymptotic
form of z

(j)
k (n) for every fixed j and k.

Our divide-and-conquer approach to the problem
of stabbing interval chains with triples (j = 3) is very
similar to the approach of Alon and Schieber [3], for a
problem related to offline computation of partial sums
in semigroups (see also [8, 16]). In fact, both problems
have the same asymptotic bounds. (However, we are
not aware of any explicit reduction between the two
problems.)

Our bounds for weak ε-nets and for stabbing in-
terval chains also bear a remarkable similarity to the
bounds on λs(n), the maximum length of a Davenport–
Schinzel sequence of order s on n symbols. The upper
and lower bounds for λs(n), for fixed s ≥ 4, have the
form n · 2poly(α(n)), where the degree of the polynomial
in the exponent depends linearly in s (see Sharir and
Agarwal [15]). We do not see any connection between
the two problems, which makes this all the more sur-
prising. Moreover, our bounds are slightly sharper than
those for λs(n); this makes us believe that similar im-
provements can be established for the bounds on λs(n).
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