

DISCRETE OPTIMIZATION WEEK 6

EXERCISE 1

We showed in class that if a linear program in *equational form* is feasible and bounded, then it has an optimal solution which is a vertex of the polyhedron of feasible solutions. Show that this is not always true for general linear programs. Namely, construct a linear program that is feasible and bounded but whose set of optimal solutions does not contain any vertex.

Solution : For example, maximize $x_1 + x_2$ subject to $x_1 + x_2 \le 1$.

EXERCISE 2

Consider the following simplex tableau. Specify the entering variable and the leaving variable according to the following pivot rules :

- a) Largest coefficient
- b) Largest increase
- c) **optional**
- Steepest edge
- d) Bland's rule

Solution :

a) The largest coefficient has x_6 . For $x_6 = \frac{2}{3}$, x_1 or x_3 leaves the basis. The choice is arbitrary, but below we stick to the latter.

$$x_{1} = 2x_{3} + 4x_{4} - 11x_{5}$$

$$x_{2} = 1 + x_{3} - 2x_{4} - 7x_{5}$$

$$x_{6} = \frac{2}{3} - \frac{x_{3}}{3} - \frac{x_{4}}{3} + \frac{5}{3}x_{5}$$

$$z = \frac{13}{3} - \frac{2}{3}x_{3} - \frac{17}{3}x_{4} + \frac{13}{3}x_{5}$$

b) The largest increase is achieved by increasing x_5 to $\frac{3}{2}$. Thus, the leaving variable is x_2 . The return value of the objective function denoted by z in this case increases by $\frac{3}{2}$. Note that by increasing x_6 we gain only $\frac{4}{3}$.

$$x_{1} = \frac{5}{2} + x_{2} + \frac{7}{2}x_{4} - \frac{9}{2}x_{6}$$

$$x_{5} = \frac{3}{2} - x_{2} - \frac{3}{2}x_{4} - \frac{3}{2}x_{6}$$

$$x_{3} = \frac{19}{2} - 5x_{2} - \frac{17}{2}x_{4} - \frac{21}{2}x_{6}$$

$$z = \frac{9}{2} - x_{2} - \frac{13}{2}x_{4} + \frac{1}{2}x_{6}$$

c) Steepest edge. The vector *c* corresponding to the objective function is (0, 0, 0, -5, 1, 2). We want to maximimze

$$s = \frac{\langle c, (\mathbf{x}_{\text{new}} - \mathbf{x}_{\text{old}}) \rangle}{||\mathbf{x}_{\text{new}} - \mathbf{x}_{\text{old}}||}$$

Where $\mathbf{x}_{old} = (4, 3, 2, 0, 0, 0)$. In case x_5 is chosen to be the variable for entering the basis $\mathbf{x}_{new} = (\frac{5}{2}, 0, \frac{19}{2}, 0, \frac{3}{2}, 0)$. In case x_6 is chosen to be the variable for entering the basis we have $\mathbf{x}_{new} = (0, 1, 0, 0, 0, \frac{2}{3})$. The straightforward calculation reveals that $s = \frac{3}{\sqrt{279}}$ in case of x_5 and $s = \frac{4}{\sqrt{210}}$ in case of x_6 . Hence, according to this rule we go for x_6 , and the leaving variable can be again chosen arbitrarily between x_1 and x_3 . See a) for the tableau.

d) For Bland's rule the entering variable is x_5 and the leaving variable is x_2 . See b) for the tableau.

EXERCISE 3

Let <i>P</i> be the following linear program	n in equational form :		
Maximize	$-x_1 + 3x_2 - x_3 + 3x_4$		
Subject to :	$3x_1 + 2x_2 - 7x_3 + x_4$	=	-1
	$2x_1 + x_2 + x_3 + x_4$	=	5
	$x_1 - 3x_2 - 3x_3$	=	10

Which auxiliary linear program do we have to solve in order to find a basic feasible solution for *P*?

Solution : Maximize Subject to :	$-x_5 - x_6 - x_7$	$-x_5 - x_6 - x_7$		
	$-3x_1 - 2x_2 + 7x_3 - x_4 + x_5$	=	1	
	$2x_1 + x_2 + x_3 + x_4 + x_6$	=	5	
	$x_1 - 3x_2 - 3x_3 + x_7$	=	10	
	$x_1, x_2, x_3, x_4, x_5, x_6, x_7$	\geq	0	

Note that we multiply the first equation by -1 to get a non-negative right-hand side.