

Bachelor semester 4-DO

DISCRETE OPTIMIZATION WEEK 8

SOLUTIONS 1

Let *A* is a matrix with *m* rows and *n* columns and $\mathbf{b} \in \mathbb{R}^m$. For each of the following statements fill in the blank. a) If the system $A\mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$ is infeasible then there exists a $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y}^T A \ge 0^T$ and $\mathbf{y}^T \mathbf{b} < 0$. b)If the system $A\mathbf{x} \le \mathbf{b}, \mathbf{x} \ge 0$ is infeasible then there exists a $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y} \ge 0, \mathbf{y}^T A \ge 0^T$ and $\mathbf{y}^T \mathbf{b} < 0$. c)If the system $A\mathbf{x} \le \mathbf{b}, \mathbf{x} \in \mathbb{R}^n$ is infeasible then there exists a $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y} \ge 0, \mathbf{y}^T A \ge 0^T$ and $\mathbf{y}^T \mathbf{b} < 0$. d) If the system $A\mathbf{x} = \mathbf{b}, \mathbf{x} \in \mathbb{R}^n$ is infeasible then there exists a $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y} \ge 0, \mathbf{y}^T A = 0^T$ and $\mathbf{y}^T \mathbf{b} < 0$. Which of the statements if weaker than the other ? EXERCISE 2

For the following set of inequalities, do Fourier-Motzkin elimination on the variable *x*. Afterwise, show how one can view the new set of inequalities as a linear combination of the original ones, that is, give the numbers for which you could multiply the original inequalities in order to obtain the new set of inequalities.

- $4x + 5y \le 12\tag{1}$
- $3x 9y \le 3 \tag{2}$
- $-2x + 5y \le -10 \tag{3}$
 - $7x + 3y \le -14 \tag{4}$
 - $-x + 2y \le 2 \tag{5}$

SOLUTIONS 2

On the first step, we get the following inequalities.

$$x \le 3 - \frac{5}{4}y$$
$$x \le 1 + 3y$$
$$x \ge 5 + \frac{5}{2}y$$
$$x \le -2 - \frac{3}{7}y$$
$$x \ge 2y - 2$$

These are then transformed into the following inequalities.

$$3 - \frac{5}{4}y \ge 5 + \frac{5}{2}y$$
$$3 - \frac{5}{4}y \ge 2y - 2$$
$$1 + 3y \ge 5 + \frac{5}{2}y$$
$$1 + 3y \ge 2y - 2$$
$$-2 - \frac{3}{7}y \ge 5 + \frac{5}{2}y$$
$$-2 - \frac{3}{7}y \ge 2y - 2$$

Rewriting :

$15y \leq -8$	(6)
$13y \le 20$	(7)
$-y \leq -8$	(8)
$-y \leq 3$	(9)
$41y \leq -98$	(10)

$$17y \le 0 \tag{11}$$

- equation 6= equation 1+ $2 \times$ equation 3.
- equation 7= equation $1 + 4 \times$ equation 5.
- equation $8 = \frac{2}{3} \times \text{equation } 2 + \frac{3}{2} \times \text{equation } 3.$
- equation $9=\frac{1}{3} \times \text{equation } 2+ \text{equation } 5.$ equation $11=2 \times \text{equation } 4+7 \times \text{equation } 3.$ equation $11=\text{equation } 4+7 \times \text{equation } 5.$